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Abstract

Automatic machine translation (MT) metrics
are widely used to distinguish the translation
qualities of individual machine translation sys-
tems. However, it is unclear whether automatic
metrics produce reliable sentence level scores
for downstream tasks that use machine transla-
tion as an intermediate step. We evaluate the
segment-level performance of nine MT met-
rics (chrF, COMET, BERTScore, etc.) on three
downstream cross-lingual tasks (dialogue state
tracking, question answering, and semantic
parsing). For each task, we only have access to
a monolingual task-specific model. We calcu-
late the correlation between the metric’s ability
to predict a good/bad translation with the suc-
cess/failure on the final task for the Translate-
test setup. Our experiments demonstrate that
all metrics exhibit negligible correlation with
downstream outcomes. We also find that the
scores provided by neural metrics are not inter-
pretable mostly because of undefined ranges.
Our analysis suggests that future MT metrics
be designed to produce error labels rather than
scores to facilitate extrinsic evaluation.

1 Introduction

Machine translation (MT) systems are being widely
deployed as a stand-alone service or used as an ap-
plication programming interface in complex tasks
such as cross-lingual information retrieval (Zhang
et al., 2022) or automated multilingual customer
support (Gerz et al., 2021). When an erroneous
translation is generated by the MT systems, it may
add new errors in the pipeline of the complex task
leading to a poor user experience. For example,
consider the user’s request in Chinese H 7 3¢ ?

(Is there any good Jamaican food in Cambridge?)
is machine translated into English as Does Cam-
bridge have a good meal in Jamaica?. An intent
detection model will thus consider “Jamaica” as a
location instead of cuisine and prompt the search

engine to look up restaurants in Jamaica !. To avoid
this cascading of errors, it is crucial to detect an
incorrect translation before it is passed into the next
stage.

One way to approach this problem is to use seg-
ment level scores provided by MT metrics. There
has been great progress in the development of auto-
matic MT metrics with some metrics demonstrat-
ing > 0.9 correlation on the system level for some
language pairs (Ma et al., 2019). Despite MT sys-
tems being a crucial intermediate step in several
applications, the behaviour of these metrics under
task-oriented evaluation is less explored.

In this work, we provide a complementary eval-
uation of MT metrics where the scores from these
metrics are used to determine if that translation
will not add to new errors in the downstream task.
We consider the Translate-Test setting. We as-
sume access to a parallel task-oriented dataset, a
task-specific monolingual model, and a translation
model that can translate from the target language
into the language of the monolingual model. At
test time, the target language input is translated
into the source language and then executed on a
task-specific model. We use the outcome of this
extrinsic task to construct a binary classification
benchmark for the metrics. Within this new dataset,
we exclude all the examples where the examples
in the source language failed on the extrinsic task.
The metrics are then evaluated on this new classifi-
cation task.

We use dialogue state tracking, semantic parsing,
and extractive question answering as our respective
extrinsic tasks. We evaluate nine metrics consisting
of string overlap metrics, embedding based metrics,
and metrics trained using scores obtained through
human evaluation of MT outputs. Surprisingly, we
find that this setup is hard for the existing metrics
as the metrics show poor performance on the clas-
sification task. We thoroughly analyse the failure

"Example taken from the Multi?WoZ dataset



of the metrics through quantitative and qualitative
evaluation. We also investigate peculiar proper-
ties of the metrics such as generalisation to new
languages, alternatives to references for reference-
based metrics in an online setting, and conduct
task-specific ablation studies.

Our findings are summarised as follows:
1. We devise a new classification task that measures
whether the segment level scores are indicative of
the downstream performance of the extrinsic task
(See Section 3).
2. We find that segment level scores provided by
the nine metrics have a negligible correlation with
the performance of the end task (See Section 4.1).
Most metrics produce scores that are uninforma-
tive (Section 4.3). Also, varying tasks have varying
sensitivity to different MT errors (Section 4.5).
3. We make recommendations to develop MT met-
rics that predict labels instead of scores and suggest
reusing existing post-editing datasets/MQM labels
(See Section 5).

2 Related Work

Evaluation of machine translation has been of
great research interest across different research
communities (Nakazawa et al., 2021; Fomicheva
et al., 2021). Notably, the Conference on Machine
Translation (WMT) has been organising annual
shared tasks on automatic MT evaluation since
2006 (Koehn and Monz, 2006; Freitag et al., 2021b)
that invites metric developers to evaluate their meth-
ods on outputs of several MT systems. A common
protocol in evaluating these metrics is to compare
the scores produced by these metrics with human
judgements collected for the output translations.
Designing protocols for human evaluation of ma-
chine translated outputs and meta evaluation is not
straightforward (Mathur et al., 2020a), leading to
the development of several different methodologies
and analyses over the years.

Human evaluation of MT systems has been car-
ried out based on guidelines for fluency, adequacy
and/or comprehensibility (White et al., 1994) eval-
uating every generated translation often on a fixed
scale of 1 to 5 (Koehn and Monz, 2006) or 1 to
100 (Graham et al., 2013) (direct assessments). For
some years, the ranking of MT systems was based
on a binary comparison of outputs from two differ-
ent MT systems (Vilar et al., 2007). More recently,
expert-based evaluation is carried out based on
Multidimensional Quality Metrics (Lommel et al.,

2014) where translation outputs are scored on the
severity of errors using a fine-grained error ontol-
ogy (Freitag et al., 2021a,b). Over the years, dif-
ferent methods to compute the correlation between
the scores produced by the metrics and this human
evaluation have been suggested based on the draw-
backs of the previous ones (Callison-Burch et al.,
2006; Bojar et al., 2014, 2017). Most metrics claim
their effectiveness by comparing their performance
with competitive metrics on the recent method for
computing correlation with human judgements on
the system-level.

The meta evaluation progress is generally docu-
mented in the metrics shared task overview papers
(Callison-Burch et al., 2007). For example, Stano-
jevic et al. (2015) highlighted the effectiveness of
neural embedding based metrics; Ma et al. (2019)
show that metrics struggle on segment level perfor-
mance despite achieving impressive system level
correlation; Mathur et al. (2020b) investigate how
different metrics behave under different domains.
In addition to the overview papers, Mathur et al.
(2020a) show that then meta evaluation regimes
were sensitive to outliers and small changes in eval-
uation metrics were not sufficient to claim the effec-
tiveness of any metric. Kocmi et al. (2021) conduct
a comprehensive evaluation of metrics to identify
which metric is best suited for pairwise ranking of
MT systems. Guillou and Hardmeier (2018) look at
a specific phenomenon of whether metrics are capa-
ble of evaluating translations involving pronominal
anaphora.

All the above works draw their conclusions
based on some comparison with human judgement.
Our work focuses on the usability of the metrics
which is solely judged on their ability to work with
downstream tasks where MT is used as an interme-
diate step. The emphasis of the meta evaluation
is also on their segment level performance. Task
based MT evaluation has been well studied in the
literature (Jones and Galliers (1996); Laoudi et al.
(2006); Zhang et al. (2022), inter alia) However,
these works focus on evaluating individual MT sys-
tems than investigating M T metrics. Scarton et al.
(2019) propose a task based evaluation of metrics
where the task is to rank translations based on the
time to post-edit them. Our work is the first to
address the evaluation of MT metrics through ex-
trinsic tasks when MT is used as an intermediate
step.



3 Methodology

We describe the construction of the classification
setup and the metrics evaluated on the classification
task.

3.1 Setup

For all the tasks described below, we first train a
model for that task in the monolingual setup. We
then evaluate the source language on that task and
store the predictions of the model. As we follow
the Translate-test setup, the target language inputs
for the task are the first machine translated into
the source language and then the translations are
given as input to the task model. We use either (i)
OPUS translation models or (ii) M2M100 transla-
tion or (iii) translations provided by the authors of
the respective datasets. Note that the data across
the target languages are parallel. We obtain the
predictions for the translated data to construct a
binary classification benchmark for the metrics.

We only consider all the examples in the tar-
get language that were predicted as correct in the
source language to avoid any errors that arise from
the complexity of the task. Thus, all the incorrect
predictions for the target language in the end task
should arise from erroneous translations. We use
these predictions to build a binary classification
benchmark - all the examples from the target lan-
guage that are correctly predicted receive a positive
label while the incorrect predictions receive a neg-
ative label.

We consider the input from the target language
as “source”, the corresponding machine transla-
tion as “hypothesis” and the input from the source
language as “reference”. These triples are then
scored by the respective metrics. After obtaining
the segment-level scores for these triples, we find
a threshold for the scores, thus turning the metrics
into classifiers. The metrics are then evaluated on
how well their predictions for a good/bad transla-
tion correlate with the success/failure of the end
task for the target language.

3.2 Tasks

We evaluate the metrics on the following tasks.

3.2.1 Dialogue State Tracking

In the dialogue state tracking task, a model needs
to map the user’s goals and intents in a given con-
versation to a set of slots and values - known as
a “dialogue state” based on a pre-defined ontol-
ogy. MultiWoZ 2.1 (Eric et al., 2020) is a popular

dataset for examining the progress in dialogue state
tracking which consists of multi-turn conversations
in English spanning across 7 domains. We consider
the Multi?WoZ dataset (Hung et al., 2022) where
the development and test set have been profession-
ally translated into German, Russian, Chinese, and
Arabic from the MultiWoZ 2.1 dataset. We use
the dialogue state tracking model trained on the
English dataset by Lee et al. (2019). We consider
the “Joint Goal Accuracy” where the example is
marked correct only if the predicted dialogue state
is exactly equal to the ground truth to provide la-
bels for the binary classification task. The metric
scores are produced for the current utterance said
by the user.

3.2.2 Semantic Parsing

Semantic parsing transforms natural language utter-
ances into logical forms to express utterance seman-
tics in some machine-readable language. The orig-
inal ATIS study (Hemphill et al., 1990) collected
questions about flights in the USA with the corre-
sponding SQL to answer respective questions from
arelational database. We use the MultiATIS++SQL
dataset from Sherborne and Lapata (2022) com-
prising gold parallel utterances in English, French,
Portuguese, Spanish, German and Chinese (from
Xu et al. (2020)) paired to executable SQL output
logical forms (from Iyer et al. (2017)). The model
similarly follows Sherborne and Lapata (2022), as
an encoder-decoder Transformer model based on
MBARTS50 (Tang et al., 2021). The model gener-
ates valid SQL queries and performance is mea-
sured as exact-match “denotation accuracy” — the
proportion of output queries returning identical
database results relative to gold SQL outputs.

3.2.3 Extractive Question Answering

The task of extractive question answering is predict-
ing a span of words from a paragraph correspond-
ing to the question. We use the XQuaD dataset
(Artetxe et al., 2020) for evaluating extractive ques-
tion answering. The XQuAD dataset was obtained
by professionally translating examples from the
development set of English SQuAD dataset (Ra-
jpurkar et al., 2016) into ten languages - Spanish,
German, Greek, Russian, Turkish, Arabic, Viet-
namese, Thai, Chinese, and Hindi. We use the pub-
licly available question answering model that fine-
tunes RoBERTa (Liu et al., 2019) on the SQuAD
training set 2 We use the “Exact-Match” metric, i,e:

Zhttps://huggingface.co/csarron/roberta-base-squad-v|1



Metric / Lang zh de ar ru

Good / Bad 1465/ 1796 2162 /1099 1744 /1517 1517/ 1744
Method Fl1 MCC Fl MCC F1 MCC F1 MCC
random 0489 | 0.02 | 0.499 | -0.002 | 0.497 | 0.008 | 0.486 | 0.006
BLEU 0.401 | -0.166 | 0.601 | 0.211 | 0.421 | -0.153 | 0.469 | -0.062
chrF 0.384 | -0.227 | 0.601 | 0.212 | 0.421 | -0.153 | 0.486 | 0.197
BERTScore 0.355 0 0.374 | -0.106 | 0.425 | -0.146 | 0.392 | -0.203
COMET-DA 0.357 | -0.115 | 0.554 | 0.141 | 0.458 | -0.085 | 0.43 | -0.052
COMET-MQM 0462 | 0.127 | 051 | 0.097 | 0.462 | 0.073 | 0474 | 0.14
UniTE 0.46 | -0.077 | 0.566 | 0.158 | 0.478 | 0.094 | 0.434 | -0.031
COMET-QE-DA 0.526 | 0.196 | 0.535 | 0.083 | 0.55 | 0.173 | 0.429 | -0.053
COMET-QE-MQM | 0.525 | 0.193 | 0.511 | 0.023 | 0.55 | 0.172 | 0.62 | 0.243
UniTE-QE 0.426 | -0.112 | 0.571 | 0.164 | 0.483 | 0.095 | 0.613 | 0.227

Table 1: Performance of different metrics when the extrinsic task is dialogue state tracking on the Multi?WoZ
dataset where the state tracker is trained in English. The good/bad are the number of examples in the respective
labels for the classification task. Macro F1 scores and MCC scores are reported to quantify if the metric can actually
detect a breakdown for the extrinsic task. Metrics have negligible correlation with the outcomes of the end task.

the model’s predicted answer span exactly matches
the gold standard answer span; for the binary clas-
sification task. The metrics scores are produced
for the question and the context. A translation is
considered to be faulty if either of the scores falls
below the threshold.

3.3 Maetrics

We describe three types of metrics based on their
design

3.3.1 Surface level overlap

BLEU (Papineni et al., 2002) compares the token-
level n-grams of the hypothesis with the reference
translation and then computes a precision score
weighted by a brevity penalty.

chrF (Popovi¢, 2017) evaluates translation outputs
based on a character n-gram F-score by computing
overlaps between the hypothesis and the reference.

3.3.2 Embedding based

BERTScore (Zhang et al., 2020) uses contextual
embeddings from pre-trained language models to
compute the similarity between the tokens in the
reference and the generated translation using cosine
similarity. The similarity matrix is used to compute
precision, recall, and F1 scores.

3.3.3 Trained on WMT Data

WMT organizes an annual shared task on develop-
ing MT models for several categories in machine
translation (Akhbardeh et al., 2021). Human eval-
uation of the translated outputs from the partici-
pating machine translation models is often used to
determine the best performing MT system. In re-
cent years, this human evaluation has followed two
protocols - (i) Direct Assessment (DA) (Graham

et al., 2013): where the given translation is rated
between 0 to 100 based according to the perceived
translation quality and (ii) Expert based evalua-
tion where the translations are evaluated by profes-
sional translators with explicit error listing based
on the Multidimensional Quality Metrics (MQM)
ontology. MQM ontology consists of a hierarchy
of errors and translations are penalised based on
the severity of errors in this hierarchy. These hu-
man evaluations are then used as training data for
building new MT metrics. We now describe these
metrics:

COMET-DA (Rei et al., 2020) uses a cross-lingual
encoder (XLM-R (Conneau et al., 2020)) and pool-
ing operations to obtain sentence-level represen-
tations of the source, hypothesis, and reference.
These sentence embeddings are combined and then
passed through a feedforward network to produce
a score. COMET is trained on human evaluation
scores of machine translation systems submitted to
WMT until 2020.

COMET-QE-DA was trained similarly to COMET-
20 but only the source and the hypothesis are com-
bined to produce a final score as this is a reference-
free metric.

COMET-MQM was trained similarly as COMET-
DA. The training data consists of direct assess-
ments till 2021 which is then fine-tuned with MQM
scores. COMET-QE-MQM is the reference free
version of COMET-MQM i,e: references are ex-
cluded during training and evaluation.

In all the variants of the COMET, the MQM
scores and DA scores are converted to z-scores to
reduce the effect of outlier annotations.

UniTE (Wan et al., 2022), Unified Translation
Evaluation, is a metric approach where the model-



Metric / Lang en fr pt es zh
Good / Bad 220/ 119 293 /46 210/129 193/ 146 174/ 165
Fl1 MCC F1 MCC F1 MCC Fl MCC F1 MCC
random 0.49 | -0.003 | 0.409 | -0.007 | 0.462 | -0.07 | 0.479 | -0.035 | 0.468 | -0.063
BLEU 0.611 | 0.226 | 0.523 | 0.046 | 0.592 | 0.184 | 0.605 | 0.23 | 0.614 | 0.241
chrF 0.598 | 0.21 | 0.539 | 0.078 | 0.641 03 | 0.621 | 0.242 | 0.67 0.34
BERTScore 0.623 | 0.251 | 0.515 | 0.033 | 0.638 | 0.312 | 0.569 0.2 0.571 | 0.15
COMET-DA 0.624 | 0.263 | 0.595 | 0.196 | 0.684 | 0.394 | 0.666 | 0.332 | 0.614 | 0.242
COMET-MQM 0.637 | 0.328 | 0.613 | 0.226 | 0.683 | 0.406 | 0.631 | 0.264 | 0.553 | 0.124
UniTE 0.629 | 0.303 | 0.608 | 0.243 | 0.619 | 0.302 | 0.684 | 0.37 | 0.458 | -0.076
COMET-QE-DA 0.556 | 0.161 | 0.592 | 0.185 | 0.645 | 0.331 | 0.596 | 0.206 | 0.524 | 0.054
COMET-QE-MQM | 0.62 025 | 0.522 | 0.044 | 0.619 | 0.295 | 0.576 | 0.181 | 0.532 | 0.088
UniTE-QE 0.503 | 0.024 | 0.464 0 0.556 | 0.132 | 0.631 | 0.279 | 0.327 0

Table 2: Performance of different metrics when the extrinsic task is parsing on the MultiATIS++ dataset with the
parser trained in German. The good/bad are the number of examples in the respective labels for the classification
task. Typically, metrics have negligible correlation with the outcomes of the end task.

based metrics can possess the ability to evaluate
translation outputs following all three evaluation
scenarios, i.e. source-only, reference-only, and
source-reference-combined.

3.4 Evaluation

We evaluate the performance of the metric on the
respective binary classification tasks using macro-
F1 and Matthew’s Correlation Coefficient (MCC)
(Matthews, 1975). As the class distribution will
change depending on the task and the language
pair, we selected metrics that are robust to class
imbalance. We included MCC to interpret the MT
metric’s standalone performance for the given ex-
trinsic task. The range of macro-F1 is between 0
to 1 and the range of MCC is between -1 to 1. An
MCC value around 0 indicates no correlation. Any
MCC value between 0 and 0.3 indicates negligible
correlation, 0.3 to 0.5 indicates low correlation.

4 Results

We report the results for dialogue state tracking
(Table 1), semantic parsing (Table 2) and question
answering (Table 3). We only report the results
when the source language is De in Table 2 and
report the results for all the other source languages
in Appendix. We also report the macro-F1 scores
for question answering in Appendix. We use a
random baseline for comparison which assigns the
positive and negative labels with equal probability.

4.1 Performance on extrinsic tasks

We find that the metrics perform better than the
random baseline on the macro-F1 metric (except
BERTScore for dialogue state tracking). We use
MCQC to identify if this increase in macro-F1 makes
the metric usable in the end task. Evaluating on

MCC, we find that all the metrics show negligi-
ble correlation under almost all settings, across all
three tasks. Contrary to the trend where neural
metrics are better than metrics based on surface
overlap (Freitag et al., 2021b), we find this binary
classification to be difficult across all the metrics.

While comparing the reference-based versions
of trained metrics (COMET-DA, COMET-MQM,
UniTE) with their reference-free equivalents
(COMET-QE-DA, COMET-QE-MQM, UniTE-QE
respectively), we observe that generally reference-
based perform better than their reference-free ver-
sions for semantic parsing and question answer-
ing. However, this trend flips for the dialogue state
tracking where reference-free performs the same
or better than reference-based metrics. We also
note that references are unavailable at test time,
hence reference-based metrics are not suitable in
this setting. We discuss alternative ways of obtain-
ing references in Section 4.4.

Between the use of MQM-scores and DA-
scores during fine-tuning the different COMET
variants, we find that both COMET-QE-DA and
COMET-DA are better than COMET-QE-MQM
and COMET-MQM respectively for question an-
swering. There is no clear winner for both dialogue
state tracking and semantic parsing. The metrics
exhibit similar performance for dialogue state track-
ing in the reference-based scenario. For the remain-
ing cases, the MQM-based metrics and DA-based
metrics have varying performance.

We now conduct some further analyses on the
results:

4.2 Performance on zero-shot language pairs

The language pairs in the trained metrics are only
based on the language pairs in WMT data, around



Metric / Lang ar de el es hi ru th tr vi zh
Good / Bad 5927264 | 696/169 | 701/170 | 721/152 | 631/241 | 701/173 | 539/323 | 443/389 | 616/251 | 606/266

random 0.023 -0.002 -0.002 0.017 0.001 -0.002 -0.002 0.028 -0.051 -0.045
BLEU 0.135 0.048 0.142 0.098 0.162 0.125 0.128 0.097 0.108 0.171
chrF 0.16 0.083 0.172 0.092 0.202 0.106 0.162 0 0.173 0.119
BERTScore 0.139 0.076 0.173 0.051 0.209 0.131 0.121 0.046 0.173 0.148
COMET-DA 0.193 0.122 0.194 0.086 0.187 0.111 0.125 0.108 0.124 0.12
COMET-MQM 0.096 0.011 0.025 0.017 0.062 -0.023 -0.001 -0.05 0.079 0.054
UniTE 0.068 -0.031 -0.002 -0.014 0.043 0.047 -0.006 0.056 -0.017 -0.023
COMET-QE-DA 0.178 0.084 0.142 0.068 0.125 0.115 0.066 0.049 0.063 0.11
COMET-QE-MQM 0.099 0.05 -0.013 0.025 0.09 -0.025 0.041 -0.077 0.068 0.07
UniTE-QE 0.065 -0.031 0.012 -0.008 0.035 0.069 0.073 0.056 -0.009 -0.069

Table 3: MCC for different metrics when the extrinsic task is extractive question answering where the model is
trained for English question. The good/bad are the number of examples in the respective labels for the classification
task. Metrics have poor performance on the classification task as most of them report MCC < 0.3

half of which contains English as one of the lan-
guages in the translation pair. We also note that
our dialogue state tracking and question answering
tasks only have the task specific language as En-
glish. Similar to Kocmi et al. (2021), we consider a
subset of results from the semantic parsing task to
investigate if the use of multilingual embeddings
in these trained metrics allows generalization to
unseen language pairs. We consider five different
types of language pairs in the zero-shot setting. (i)
en-es is unseen language pair when the source lan-
guage is en (ii) pt-en is unseen language pair when
the target language is en (iii) es-de is the pair where
the two languages are from different language fam-
ilies but share the same script, (iv) zA-fr contains
source language with logogram script and (v) de-
zh contains target language with logogram script.
We report the difference between the chosen MT
metric and the random baseline for different lan-
guage pairs in Table 4. We find that trained metrics
have similar performance on unseen languages ex-
cept UniTE metrics for en-es and UniTE reference
based for pt-en. Metrics based on string matches
have similar (and sometimes better) performance
than the trained metrics. Reference-based metrics
have higher gains than their respective reference-
free counterparts. As the metrics already have a
poor performance on the seen languages, we cannot
verify if this similar poor performance of unseen
language pairs is an indicator of generalization. We
also find that the metrics have higher gains in the
case of zh-fr where the translation is of poor quality
for the end task. This is expected as the errors in
these translations will be easier to detect.

4.3 Finding the threshold

Interpreting system level scores provided by au-
tomatic metrics requires additional context such
as the language pair of the machine translation

src-tgt en-es pt-en es-de zh-fr de-zh
examples 193/92 | 171/172 | 193/196 | 53/275 | 144/183
random 0.455 0.466 0.479 0.384 0.503
COMET-DA 0.15 0.089 0.187 0.283 0.145
COMET-MQM 0.146 0.143 0.152 0.274 0.159
UniTE -0.031 -0.039 0.205 0.121 0.094
COMET-QE-DA 0.089 0.061 0.117 0.137 0.036
COMET-QE-MQM | 0.109 0.118 0.097 0.118 0.053
UniTE-QE -0.022 0.065 0.152 0.194 0.014

Table 4: Difference of macro F1 scores of different
metrics and random baseline with semantic parsing
as extrinsic task to check generalisation of metrics .
The top row has absolute macro F1 scores for the ran-
dom baseline and every other row is A = metricp; —
randomgi. The first language in the pair is the source
language of the task-specific model. The second lan-
guage is the target language used in the translate test
setting. The metrics show similar yet poor performance
to Table 2.

model or another MT system for comparison 3. In
this classification setup, we rely on interpreting
the segment-level score to determine whether the
translation is suitable for the downstream task. We
observe that finding the right threshold to identify
if a translation needs correction is not straightfor-
ward.

We report the mean and standard deviation of
best thresholds for every language pair for every
metric in Table 5. Surprisingly, the thresholds are
not consistent and off from the midpoint in the
case of bounded metrics - BLEU (0-100), chrF
(0-100), and BERTScore (0 to 1). The standard
deviations across the table indicate that the thresh-
old varies greatly across language pairs. We find
that thresholds of these metrics are also not trans-
ferable across tasks. The COMET metrics except
COMET-DA have smaller standard deviations. By
design, the range of COMET metrics in this work
is unbounded. Howeyver, as discussed in the theo-
retical range of COMET metrics 4, empirically, the

*https://github.com/Unbabel/COMET/issues/18
4https: //unbabel.github.io/COMET/html/faqgs.
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metric SP QA DST
chrF 440+ 13.7 | 53.9+07.8 | 58.0+ 10.6
BLEU 15.5 +08.8 16.1 £04.9 | 27.54+08.3
BERTScore 0.50 £ 0.21 0.54 +£0.08 | 0.79 £ 0.15
COMET-DA 021 +£0.35 | 0.30+0.23 | 0.75+0.13
COMET-MQM 0.03 £ 0.01 0.06 £ 0.01 | 0.04 +0.01
UniTE 0.01 +0.37 -0.44+0.38 | 0434+0.10
COMET-QE-DA 0.024+0.07 | 0.02+0.01 | 0.11 £0.02
COMET-QE-MQM | 0.11 £ 0.01 0.00 £ 0.04 | 0.12 4+ 0.01
UniTE-QE -0.07 £ 048 | -0.24 +£0.13 | 0.36 £0.16

Table 5: Mean and standard deviation of the best thresh-
old on the development set for all the language pairs
in the respective extrinsic tasks. The thresholds are not
consistent across language pairs and across tasks for
both bounded and unbounded metrics. QA is question
answering. DST=Dialogue state tracking. SP is seman-
tic parsing

range for COMET-MQM is found to lie between
-0.2 to 0.2 which questions whether this small stan-
dard deviation is an indicator of the consistency
of the threshold. Some language pairs within the
COMET metrics have negative thresholds. We also
find that some of the use cases under the UniTE
metrics have a mean negative threshold indicating
that good translations can have negative UniTE
scores. Similar to Marie (2022), we suggest that
notion of negative scores for good translation only
for certain language pairs is counter-intuitive as
most NLP metrics tend to produce positive scores.

Thus, we find that both bounded and unbounded
metrics discussed in this work do not provide seg-
ment level scores whose range can be interpreted
meaningfully across both tasks and different lan-
guage pairs.

4.4 Reference-based metrics in online setting

In an online setting, we don’t have access to ref-
erences at test time. To test the effectiveness of
reference-based methods in this setting, we con-
sider translating the translation back into the source
language. While evaluating the reference-based
methods on the new setup, the language pair flips
the direction; the srcpey 1S Mitoid, Mtpew 1S the
translation of mt,g, and refrew 1S STCog. We
generate these new translations using the mBART
translation model (Tang et al., 2020). We report
these results for the dialogue state tracking task
in Table 6. The table calculates the difference be-
tween the MCC values of the round trip translation
task and the MCC values reported in Table 1.

We find that most metrics improve their perfor-
mance by using the new reference except when

html

Method zh de ar ru
BLEU 0.078 | 0.025 | -0.065 | -0.103
chrf 0.314 | 0.211 | 0.128 | -0.018
BERTScore 0.313 | 0.229 0.15 -0.017
COMET-DA 0.158 | 0.14 0.075 | -0.105
COMET-MQM | 0.18 | 0.167 0 -0.115

Table 6: MCC scores of reference based metrics for the
extrinsic task of dialogue state tracking. The setup sim-
ulates an online setting where gold standard references
are not available. Instead, the translation is translated
back into the target language. MCC scores improve in
this setup over Table 1 as long as the quality of machine
translation is high (zh, de, ar).

the target language is ru. This is reassuring that
as reference-based metrics improve, their deploy-
ment in a reference-less setting can still be use-
ful when the quality of the translation outputs is
high. However, their correlation coefficients are
within the range of negligible correlation. Using
reference-based metrics in an online setting comes
with the overhead of producing another transla-
tion. Using ru as input language has the lowest
performance on the downstream task indicating the
machine translation quality of ru-en translation is
inferior. The back translation from en to ru is likely
to add additional errors to the existing erroneous
translation. This cascading of errors confuses the
metric and it can mark a perfectly useful transla-
tion from ru-en as “bad” due to the error present
in the en-ru translation. For example, in the ru-en
case, COMET-MQM has a false negative rate of
0.796 in the round-trip translation setup compared
to 0.097 when the human reference is used instead.
Thus, this setting is likely to fail when the machine
translation models generate poor-quality outputs.

4.5 Qualitative evaluation

The development of machine translation metrics
largely caters towards only the intrinsic task of eval-
uating the quality of a translated text in the target
language. The severity to penalize a translation
error is dependent on the guidelines released by the
organisers of the WMT metrics task or the design
choices of the metric developers. However, dif-
ferent downstream tasks will demonstrate varying
levels of sensitivity to the same machine transla-
tion errors (Zhang et al., 2022). For example, the
fluency of a translation is likely to be more cru-
cial when translating an utterance from the system
to the user than translating from the user to the
system.
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To quantify which translation errors are most
crucial to the respective extrinsic tasks, we conduct
a qualitative evaluation of the outputs of the respec-
tive classification tasks. We consider the behaviour
COMET-DA for this case study. We annotate at
least 100 examples containing the false positives
and the false negatives for semantic parsing when
the parser is trained in English and the target lan-
guage input is Chinese translated into English. We
annotate the MT errors (if present) in these exam-
ples based on the MQM ontology.

For semantic parsing, we find that 54% of the er-
rors belong to mistranslation. The other MT errors
belong to addition(2%), omission (6%), and fluency
(8%). The rest 30% of the errors did not have any
MT errors (none). These translations were para-
phrases of the references which were undetected
as correct translations by the metric; except in six
instances where the parsing model could not handle
the diverse input. Within mistranslation, 93% of
the errors are sensitive to the downstream task; like
named entity errors. We observe that fluency error
in the translation largely does not have an impact
on the parsing task.

We also find that approx 20% of the errors made
by the classification model arise from the task-
specific model. For example, the MT model uses
an alternative term of shuttle instead of round-trip
while generating the translation for the reference
“show me round trip flights from montreal to or-
lando”. The semantic parser fails to generalise
despite being trained with mBART.

4.6 Ablation

We look at some ablations studies dependent on the
nature of the end tasks.

4.6.1 Cascading errors in dialogue

The results reported in Table 1 illustrate a scenario
where the automatic translation is applied on ev-
ery utterance. The dialogue state tracking model
includes the history of the conversation while pre-
dicting the current state. Thus, if an entity is in-
correctly translated at the start of the conversation,
it is likely to produce cascaded errors on the dia-
logue state tracking task. To eliminate this effect of
cascading errors, we also consider a setting where
every utterance except the current utterance uses
the gold standard translation. We then perform the
classification task and report these results in Table
7.

The number of Good examples has increased

Metric \Lang zh de ar ru
Good / Bad 2542/ 719 | 2876/385 | 2699/562 | 2563/698
random 0 0.044 -0.019 0.005
BLEU 0.067 0 0.144 0.03
chrF -0.058 0 0 -0.009
BERTScore 0 0.012 -0.02 0.048
COMET-DA 0.076 -0.011 -0.023 0.026
COMET-MQM -0.038 -0.023 -0.024 -0.051
UniTE -0.058 -0.036 -0.032 -0.067
COMET-QE -0.058 -0.024 -0.04 -0.048
COMET-QE-MQM | -0.057 0.033 -0.021 -0.069
UniTE-QE -0.069 -0.012 -0.04 -0.072

Table 7: MCC scores for metrics when extrinsic task
is dialogue state tracking when the dialogue history is
gold translations and only the context is automatically
translated. Number of bad examples decrease compared
to Table 1 indicating cascading of errors due to incor-
rect translations in the dialogue history. Metrics also
perform poor than Table 1.

over Table 1 confirming that using machine trans-
lation directly without correction causes cascading
errors in state tracking. However, there is a drop in
the performance for most metrics as compared to
Table 1.

4.6.2 Effect of true casing

The original ATIS dataset (Hemphill et al., 1990)
in English is available only in lowercase. How-
ever, contemporary machine translation models are
trained to produce true case outputs irrespective of
the input. We investigate whether this mismatch
of casing in the hypothesis and reference causes a
change in the performance of the reference-based
metrics on the downstream task. We truecase the
references using an automated tool. Note, some
entities are still in lowercase after running the tool.
We report these results in Table 8 which contains
the F1 difference between the scores computed
using the truecase references and the lowercase
references.

We find that both surface form overlap based
and neural metrics have a difference in the perfor-
mance but there is no clear trend if using true case
reference is beneficial for the end task. The effects
of using correct casing are most beneficial for the
de-en and fr-en semantic parsing tasks.

5 Recommendations

Our experiments suggest that evaluating MT met-
rics on the segment level for MT metrics has con-
siderable room for improvement. We make some
recommendations based on our observations-
Explicit error Analysis: We reinforce the pro-
posal of using the MQM scoring scheme for eval-



Metrics de fr pt es zh
BLEU 0.003 | 0.055 | -0.05 | 0.002 | -0.033
chrF 0.014 | 0.034 | -0.039 | -0.014 | -0.034
BERTScore 0.013 | 0.039 | -0.009 | -0.005 | -0.037
COMET-DA 0.018 | 0.029 | 0.075 | -0.051 | -0.021
COMET-MQM | 0.078 | 0.082 | -0.008 | -0.015 | -0.027
UniTE -0.004 | 0.305 | 0.032 | -0.093 | 0.082

Table 8: We report the difference between F1 scores
of different metrics for the classification task when the
reference is in the (synthetic) truecase v/s lowercase for
reference based metrics. The extrinsic task is semantic
parsing on the MultiATIS++ dataset where the semantic
parser is trained in English. The coloumns report the
F1 difference of the respective target language. Casing
does not have a conclusive effect on the reference based
metrics. A = truecase — lowercase

uating MT outputs as introduced in Freitag et al.
(2021a). As seen in Section 4.5, different tasks
have varying tolerance to different MT errors. With
explicit errors marked per MT output, future clas-
sifiers can only be trained on a subset of human
evaluation data containing errors most relevant to
the downstream application.

Combination of metrics: We do not find a “win-
ning metric” across our tasks (See Section 4). We
also find that neural metrics have performance sim-
ilar to surface overlap metrics. Similar to Amrhein
et al. (2022), we recommend using a combination
of different families of metrics to judge the usabil-
ity of the MT output for the downstream task.

Adding diverse references: From Section 4.5,
we find that both the neural metric and the task-
specific model are not robust to paraphrases. Baw-
den et al. (2020) proposed automatic paraphrasing
of references to improve the coverage for BLEU.
We also recommend the inclusion of diverse ref-
erences through automatic paraphrasing or data
augmentation during the training of neural metrics.

Produce labels instead of scores: From Sec-
tion 4.3, we find that a single score from the met-
ric is difficult to interpret the quality of the pro-
duced MT translation. We recommend explor-
ing whether segment-level MT evaluation can be
approached as an error classification task instead
of regression. Specifically, whether the words in
the source/hypothesis can be tagged with explicit
error labels. The MQM annotations released by
Freitag et al. (2021a) contain spans for erroneous
words and the corresponding types of errors which
can help set up the classification task. Similarly,
the post-editing datasets (Scarton et al. (2019);
Fomicheva et al. (2022) , inter alia) also provide

a starting point. An interesting exploration in this
direction is the work by Perrella et al. (2022) that
treats MT evaluation as sequence-tagging problem
i,e: words in the candidate translation are tagged
with ‘minor” or “major” error and then converted
into a weighted score. We hope to incorporate these
techniques in developing future evaluation regimes
when using MT as an intermediate step in extrinsic
tasks.

6 Conclusion

We evaluated nine different metrics on the ability
to detect errors in generated translations when ma-
chine translation is used as an intermediate step
for three extrinsic tasks - dialogue state tracking,
question answering, and semantic parsing. We
found that segment level scores provided by all
the metrics show negligible correlation with the
success/failure outcomes of the end task across
different language pairs. We attributed this result
to segment scores produced by these metrics be-
ing uninformative and that different extrinsic tasks
demonstrate different levels of sensitivity for dif-
ferent MT errors. We made recommendations to
predict error types instead of error scores to facili-
tate the use of MT metrics in downstream tasks.
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