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Abstract

Automatic machine translation (MT) metrics001
are widely used to distinguish the translation002
qualities of individual machine translation sys-003
tems. However, it is unclear whether automatic004
metrics produce reliable sentence level scores005
for downstream tasks that use machine transla-006
tion as an intermediate step. We evaluate the007
segment-level performance of nine MT met-008
rics (chrF, COMET, BERTScore, etc.) on three009
downstream cross-lingual tasks (dialogue state010
tracking, question answering, and semantic011
parsing). For each task, we only have access to012
a monolingual task-specific model. We calcu-013
late the correlation between the metric’s ability014
to predict a good/bad translation with the suc-015
cess/failure on the final task for the Translate-016
test setup. Our experiments demonstrate that017
all metrics exhibit negligible correlation with018
downstream outcomes. We also find that the019
scores provided by neural metrics are not inter-020
pretable mostly because of undefined ranges.021
Our analysis suggests that future MT metrics022
be designed to produce error labels rather than023
scores to facilitate extrinsic evaluation.024

1 Introduction025

Machine translation (MT) systems are being widely026

deployed as a stand-alone service or used as an ap-027

plication programming interface in complex tasks028

such as cross-lingual information retrieval (Zhang029

et al., 2022) or automated multilingual customer030

support (Gerz et al., 2021). When an erroneous031

translation is generated by the MT systems, it may032

add new errors in the pipeline of the complex task033

leading to a poor user experience. For example,034

consider the user’s request in Chinese 有牙加菜？035

(Is there any good Jamaican food in Cambridge?)036

is machine translated into English as Does Cam-037

bridge have a good meal in Jamaica?. An intent038

detection model will thus consider “Jamaica” as a039

location instead of cuisine and prompt the search040

engine to look up restaurants in Jamaica 1. To avoid 041

this cascading of errors, it is crucial to detect an 042

incorrect translation before it is passed into the next 043

stage. 044

One way to approach this problem is to use seg- 045

ment level scores provided by MT metrics. There 046

has been great progress in the development of auto- 047

matic MT metrics with some metrics demonstrat- 048

ing > 0.9 correlation on the system level for some 049

language pairs (Ma et al., 2019). Despite MT sys- 050

tems being a crucial intermediate step in several 051

applications, the behaviour of these metrics under 052

task-oriented evaluation is less explored. 053

In this work, we provide a complementary eval- 054

uation of MT metrics where the scores from these 055

metrics are used to determine if that translation 056

will not add to new errors in the downstream task. 057

We consider the Translate-Test setting. We as- 058

sume access to a parallel task-oriented dataset, a 059

task-specific monolingual model, and a translation 060

model that can translate from the target language 061

into the language of the monolingual model. At 062

test time, the target language input is translated 063

into the source language and then executed on a 064

task-specific model. We use the outcome of this 065

extrinsic task to construct a binary classification 066

benchmark for the metrics. Within this new dataset, 067

we exclude all the examples where the examples 068

in the source language failed on the extrinsic task. 069

The metrics are then evaluated on this new classifi- 070

cation task. 071

We use dialogue state tracking, semantic parsing, 072

and extractive question answering as our respective 073

extrinsic tasks. We evaluate nine metrics consisting 074

of string overlap metrics, embedding based metrics, 075

and metrics trained using scores obtained through 076

human evaluation of MT outputs. Surprisingly, we 077

find that this setup is hard for the existing metrics 078

as the metrics show poor performance on the clas- 079

sification task. We thoroughly analyse the failure 080

1Example taken from the Multi2WoZ dataset
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of the metrics through quantitative and qualitative081

evaluation. We also investigate peculiar proper-082

ties of the metrics such as generalisation to new083

languages, alternatives to references for reference-084

based metrics in an online setting, and conduct085

task-specific ablation studies.086

Our findings are summarised as follows:087

1. We devise a new classification task that measures088

whether the segment level scores are indicative of089

the downstream performance of the extrinsic task090

(See Section 3).091

2. We find that segment level scores provided by092

the nine metrics have a negligible correlation with093

the performance of the end task (See Section 4.1).094

Most metrics produce scores that are uninforma-095

tive (Section 4.3). Also, varying tasks have varying096

sensitivity to different MT errors (Section 4.5).097

3. We make recommendations to develop MT met-098

rics that predict labels instead of scores and suggest099

reusing existing post-editing datasets/MQM labels100

(See Section 5).101

2 Related Work102

Evaluation of machine translation has been of103

great research interest across different research104

communities (Nakazawa et al., 2021; Fomicheva105

et al., 2021). Notably, the Conference on Machine106

Translation (WMT) has been organising annual107

shared tasks on automatic MT evaluation since108

2006 (Koehn and Monz, 2006; Freitag et al., 2021b)109

that invites metric developers to evaluate their meth-110

ods on outputs of several MT systems. A common111

protocol in evaluating these metrics is to compare112

the scores produced by these metrics with human113

judgements collected for the output translations.114

Designing protocols for human evaluation of ma-115

chine translated outputs and meta evaluation is not116

straightforward (Mathur et al., 2020a), leading to117

the development of several different methodologies118

and analyses over the years.119

Human evaluation of MT systems has been car-120

ried out based on guidelines for fluency, adequacy121

and/or comprehensibility (White et al., 1994) eval-122

uating every generated translation often on a fixed123

scale of 1 to 5 (Koehn and Monz, 2006) or 1 to124

100 (Graham et al., 2013) (direct assessments). For125

some years, the ranking of MT systems was based126

on a binary comparison of outputs from two differ-127

ent MT systems (Vilar et al., 2007). More recently,128

expert-based evaluation is carried out based on129

Multidimensional Quality Metrics (Lommel et al.,130

2014) where translation outputs are scored on the 131

severity of errors using a fine-grained error ontol- 132

ogy (Freitag et al., 2021a,b). Over the years, dif- 133

ferent methods to compute the correlation between 134

the scores produced by the metrics and this human 135

evaluation have been suggested based on the draw- 136

backs of the previous ones (Callison-Burch et al., 137

2006; Bojar et al., 2014, 2017). Most metrics claim 138

their effectiveness by comparing their performance 139

with competitive metrics on the recent method for 140

computing correlation with human judgements on 141

the system-level. 142

The meta evaluation progress is generally docu- 143

mented in the metrics shared task overview papers 144

(Callison-Burch et al., 2007). For example, Stano- 145

jević et al. (2015) highlighted the effectiveness of 146

neural embedding based metrics; Ma et al. (2019) 147

show that metrics struggle on segment level perfor- 148

mance despite achieving impressive system level 149

correlation; Mathur et al. (2020b) investigate how 150

different metrics behave under different domains. 151

In addition to the overview papers, Mathur et al. 152

(2020a) show that then meta evaluation regimes 153

were sensitive to outliers and small changes in eval- 154

uation metrics were not sufficient to claim the effec- 155

tiveness of any metric. Kocmi et al. (2021) conduct 156

a comprehensive evaluation of metrics to identify 157

which metric is best suited for pairwise ranking of 158

MT systems. Guillou and Hardmeier (2018) look at 159

a specific phenomenon of whether metrics are capa- 160

ble of evaluating translations involving pronominal 161

anaphora. 162

All the above works draw their conclusions 163

based on some comparison with human judgement. 164

Our work focuses on the usability of the metrics 165

which is solely judged on their ability to work with 166

downstream tasks where MT is used as an interme- 167

diate step. The emphasis of the meta evaluation 168

is also on their segment level performance. Task 169

based MT evaluation has been well studied in the 170

literature (Jones and Galliers (1996); Laoudi et al. 171

(2006); Zhang et al. (2022), inter alia) However, 172

these works focus on evaluating individual MT sys- 173

tems than investigating MT metrics. Scarton et al. 174

(2019) propose a task based evaluation of metrics 175

where the task is to rank translations based on the 176

time to post-edit them. Our work is the first to 177

address the evaluation of MT metrics through ex- 178

trinsic tasks when MT is used as an intermediate 179

step. 180
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3 Methodology181

We describe the construction of the classification182

setup and the metrics evaluated on the classification183

task.184

3.1 Setup185

For all the tasks described below, we first train a186

model for that task in the monolingual setup. We187

then evaluate the source language on that task and188

store the predictions of the model. As we follow189

the Translate-test setup, the target language inputs190

for the task are the first machine translated into191

the source language and then the translations are192

given as input to the task model. We use either (i)193

OPUS translation models or (ii) M2M100 transla-194

tion or (iii) translations provided by the authors of195

the respective datasets. Note that the data across196

the target languages are parallel. We obtain the197

predictions for the translated data to construct a198

binary classification benchmark for the metrics.199

We only consider all the examples in the tar-200

get language that were predicted as correct in the201

source language to avoid any errors that arise from202

the complexity of the task. Thus, all the incorrect203

predictions for the target language in the end task204

should arise from erroneous translations. We use205

these predictions to build a binary classification206

benchmark - all the examples from the target lan-207

guage that are correctly predicted receive a positive208

label while the incorrect predictions receive a neg-209

ative label.210

We consider the input from the target language211

as “source”, the corresponding machine transla-212

tion as “hypothesis” and the input from the source213

language as “reference”. These triples are then214

scored by the respective metrics. After obtaining215

the segment-level scores for these triples, we find216

a threshold for the scores, thus turning the metrics217

into classifiers. The metrics are then evaluated on218

how well their predictions for a good/bad transla-219

tion correlate with the success/failure of the end220

task for the target language.221

3.2 Tasks222

We evaluate the metrics on the following tasks.223

3.2.1 Dialogue State Tracking224

In the dialogue state tracking task, a model needs225

to map the user’s goals and intents in a given con-226

versation to a set of slots and values - known as227

a “dialogue state” based on a pre-defined ontol-228

ogy. MultiWoZ 2.1 (Eric et al., 2020) is a popular229

dataset for examining the progress in dialogue state 230

tracking which consists of multi-turn conversations 231

in English spanning across 7 domains. We consider 232

the Multi2WoZ dataset (Hung et al., 2022) where 233

the development and test set have been profession- 234

ally translated into German, Russian, Chinese, and 235

Arabic from the MultiWoZ 2.1 dataset. We use 236

the dialogue state tracking model trained on the 237

English dataset by Lee et al. (2019). We consider 238

the “Joint Goal Accuracy” where the example is 239

marked correct only if the predicted dialogue state 240

is exactly equal to the ground truth to provide la- 241

bels for the binary classification task. The metric 242

scores are produced for the current utterance said 243

by the user. 244

3.2.2 Semantic Parsing 245

Semantic parsing transforms natural language utter- 246

ances into logical forms to express utterance seman- 247

tics in some machine-readable language. The orig- 248

inal ATIS study (Hemphill et al., 1990) collected 249

questions about flights in the USA with the corre- 250

sponding SQL to answer respective questions from 251

a relational database. We use the MultiATIS++SQL 252

dataset from Sherborne and Lapata (2022) com- 253

prising gold parallel utterances in English, French, 254

Portuguese, Spanish, German and Chinese (from 255

Xu et al. (2020)) paired to executable SQL output 256

logical forms (from Iyer et al. (2017)). The model 257

similarly follows Sherborne and Lapata (2022), as 258

an encoder-decoder Transformer model based on 259

MBART50 (Tang et al., 2021). The model gener- 260

ates valid SQL queries and performance is mea- 261

sured as exact-match “denotation accuracy” — the 262

proportion of output queries returning identical 263

database results relative to gold SQL outputs. 264

3.2.3 Extractive Question Answering 265

The task of extractive question answering is predict- 266

ing a span of words from a paragraph correspond- 267

ing to the question. We use the XQuaD dataset 268

(Artetxe et al., 2020) for evaluating extractive ques- 269

tion answering. The XQuAD dataset was obtained 270

by professionally translating examples from the 271

development set of English SQuAD dataset (Ra- 272

jpurkar et al., 2016) into ten languages - Spanish, 273

German, Greek, Russian, Turkish, Arabic, Viet- 274

namese, Thai, Chinese, and Hindi. We use the pub- 275

licly available question answering model that fine- 276

tunes RoBERTa (Liu et al., 2019) on the SQuAD 277

training set 2. We use the “Exact-Match” metric, i,e: 278

2https://huggingface.co/csarron/roberta-base-squad-v1
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Metric / Lang zh de ar ru
Good / Bad 1465 / 1796 2162 / 1099 1744 / 1517 1517 / 1744

Method F1 MCC F1 MCC F1 MCC F1 MCC
random 0.489 0.02 0.499 -0.002 0.497 0.008 0.486 0.006
BLEU 0.401 -0.166 0.601 0.211 0.421 -0.153 0.469 -0.062
chrF 0.384 -0.227 0.601 0.212 0.421 -0.153 0.486 0.197

BERTScore 0.355 0 0.374 -0.106 0.425 -0.146 0.392 -0.203
COMET-DA 0.357 -0.115 0.554 0.141 0.458 -0.085 0.43 -0.052

COMET-MQM 0.462 0.127 0.51 0.097 0.462 0.073 0.474 0.14
UniTE 0.46 -0.077 0.566 0.158 0.478 0.094 0.434 -0.031

COMET-QE-DA 0.526 0.196 0.535 0.083 0.55 0.173 0.429 -0.053
COMET-QE-MQM 0.525 0.193 0.511 0.023 0.55 0.172 0.62 0.243

UniTE-QE 0.426 -0.112 0.571 0.164 0.483 0.095 0.613 0.227

Table 1: Performance of different metrics when the extrinsic task is dialogue state tracking on the Multi2WoZ
dataset where the state tracker is trained in English. The good/bad are the number of examples in the respective
labels for the classification task. Macro F1 scores and MCC scores are reported to quantify if the metric can actually
detect a breakdown for the extrinsic task. Metrics have negligible correlation with the outcomes of the end task.

the model’s predicted answer span exactly matches279

the gold standard answer span; for the binary clas-280

sification task. The metrics scores are produced281

for the question and the context. A translation is282

considered to be faulty if either of the scores falls283

below the threshold.284

3.3 Metrics285

We describe three types of metrics based on their286

design287

3.3.1 Surface level overlap288

BLEU (Papineni et al., 2002) compares the token-289

level n-grams of the hypothesis with the reference290

translation and then computes a precision score291

weighted by a brevity penalty.292

chrF (Popović, 2017) evaluates translation outputs293

based on a character n-gram F-score by computing294

overlaps between the hypothesis and the reference.295

3.3.2 Embedding based296

BERTScore (Zhang et al., 2020) uses contextual297

embeddings from pre-trained language models to298

compute the similarity between the tokens in the299

reference and the generated translation using cosine300

similarity. The similarity matrix is used to compute301

precision, recall, and F1 scores.302

3.3.3 Trained on WMT Data303

WMT organizes an annual shared task on develop-304

ing MT models for several categories in machine305

translation (Akhbardeh et al., 2021). Human eval-306

uation of the translated outputs from the partici-307

pating machine translation models is often used to308

determine the best performing MT system. In re-309

cent years, this human evaluation has followed two310

protocols - (i) Direct Assessment (DA) (Graham311

et al., 2013): where the given translation is rated 312

between 0 to 100 based according to the perceived 313

translation quality and (ii) Expert based evalua- 314

tion where the translations are evaluated by profes- 315

sional translators with explicit error listing based 316

on the Multidimensional Quality Metrics (MQM) 317

ontology. MQM ontology consists of a hierarchy 318

of errors and translations are penalised based on 319

the severity of errors in this hierarchy. These hu- 320

man evaluations are then used as training data for 321

building new MT metrics. We now describe these 322

metrics: 323

COMET-DA (Rei et al., 2020) uses a cross-lingual 324

encoder (XLM-R (Conneau et al., 2020)) and pool- 325

ing operations to obtain sentence-level represen- 326

tations of the source, hypothesis, and reference. 327

These sentence embeddings are combined and then 328

passed through a feedforward network to produce 329

a score. COMET is trained on human evaluation 330

scores of machine translation systems submitted to 331

WMT until 2020. 332

COMET-QE-DA was trained similarly to COMET- 333

20 but only the source and the hypothesis are com- 334

bined to produce a final score as this is a reference- 335

free metric. 336

COMET-MQM was trained similarly as COMET- 337

DA. The training data consists of direct assess- 338

ments till 2021 which is then fine-tuned with MQM 339

scores. COMET-QE-MQM is the reference free 340

version of COMET-MQM i,e: references are ex- 341

cluded during training and evaluation. 342

In all the variants of the COMET, the MQM 343

scores and DA scores are converted to z-scores to 344

reduce the effect of outlier annotations. 345

UniTE (Wan et al., 2022), Unified Translation 346

Evaluation, is a metric approach where the model- 347
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Metric / Lang en fr pt es zh
Good / Bad 220 / 119 293 / 46 210 / 129 193 / 146 174 / 165

F1 MCC F1 MCC F1 MCC F1 MCC F1 MCC
random 0.49 -0.003 0.409 -0.007 0.462 -0.07 0.479 -0.035 0.468 -0.063
BLEU 0.611 0.226 0.523 0.046 0.592 0.184 0.605 0.23 0.614 0.241
chrF 0.598 0.21 0.539 0.078 0.641 0.3 0.621 0.242 0.67 0.34

BERTScore 0.623 0.251 0.515 0.033 0.638 0.312 0.569 0.2 0.571 0.15
COMET-DA 0.624 0.263 0.595 0.196 0.684 0.394 0.666 0.332 0.614 0.242

COMET-MQM 0.637 0.328 0.613 0.226 0.683 0.406 0.631 0.264 0.553 0.124
UniTE 0.629 0.303 0.608 0.243 0.619 0.302 0.684 0.37 0.458 -0.076

COMET-QE-DA 0.556 0.161 0.592 0.185 0.645 0.331 0.596 0.206 0.524 0.054
COMET-QE-MQM 0.62 0.25 0.522 0.044 0.619 0.295 0.576 0.181 0.532 0.088

UniTE-QE 0.503 0.024 0.464 0 0.556 0.132 0.631 0.279 0.327 0

Table 2: Performance of different metrics when the extrinsic task is parsing on the MultiATIS++ dataset with the
parser trained in German. The good/bad are the number of examples in the respective labels for the classification
task. Typically, metrics have negligible correlation with the outcomes of the end task.

based metrics can possess the ability to evaluate348

translation outputs following all three evaluation349

scenarios, i.e. source-only, reference-only, and350

source-reference-combined.351

3.4 Evaluation352

We evaluate the performance of the metric on the353

respective binary classification tasks using macro-354

F1 and Matthew’s Correlation Coefficient (MCC)355

(Matthews, 1975). As the class distribution will356

change depending on the task and the language357

pair, we selected metrics that are robust to class358

imbalance. We included MCC to interpret the MT359

metric’s standalone performance for the given ex-360

trinsic task. The range of macro-F1 is between 0361

to 1 and the range of MCC is between -1 to 1. An362

MCC value around 0 indicates no correlation. Any363

MCC value between 0 and 0.3 indicates negligible364

correlation, 0.3 to 0.5 indicates low correlation.365

4 Results366

We report the results for dialogue state tracking367

(Table 1), semantic parsing (Table 2) and question368

answering (Table 3). We only report the results369

when the source language is De in Table 2 and370

report the results for all the other source languages371

in Appendix. We also report the macro-F1 scores372

for question answering in Appendix. We use a373

random baseline for comparison which assigns the374

positive and negative labels with equal probability.375

4.1 Performance on extrinsic tasks376

We find that the metrics perform better than the377

random baseline on the macro-F1 metric (except378

BERTScore for dialogue state tracking). We use379

MCC to identify if this increase in macro-F1 makes380

the metric usable in the end task. Evaluating on381

MCC, we find that all the metrics show negligi- 382

ble correlation under almost all settings, across all 383

three tasks. Contrary to the trend where neural 384

metrics are better than metrics based on surface 385

overlap (Freitag et al., 2021b), we find this binary 386

classification to be difficult across all the metrics. 387

While comparing the reference-based versions 388

of trained metrics (COMET-DA, COMET-MQM, 389

UniTE) with their reference-free equivalents 390

(COMET-QE-DA, COMET-QE-MQM, UniTE-QE 391

respectively), we observe that generally reference- 392

based perform better than their reference-free ver- 393

sions for semantic parsing and question answer- 394

ing. However, this trend flips for the dialogue state 395

tracking where reference-free performs the same 396

or better than reference-based metrics. We also 397

note that references are unavailable at test time, 398

hence reference-based metrics are not suitable in 399

this setting. We discuss alternative ways of obtain- 400

ing references in Section 4.4. 401

Between the use of MQM-scores and DA- 402

scores during fine-tuning the different COMET 403

variants, we find that both COMET-QE-DA and 404

COMET-DA are better than COMET-QE-MQM 405

and COMET-MQM respectively for question an- 406

swering. There is no clear winner for both dialogue 407

state tracking and semantic parsing. The metrics 408

exhibit similar performance for dialogue state track- 409

ing in the reference-based scenario. For the remain- 410

ing cases, the MQM-based metrics and DA-based 411

metrics have varying performance. 412

We now conduct some further analyses on the 413

results: 414

4.2 Performance on zero-shot language pairs 415

The language pairs in the trained metrics are only 416

based on the language pairs in WMT data, around 417

5



Metric / Lang ar de el es hi ru th tr vi zh
Good / Bad 592 / 264 696 / 169 701/ 170 721 / 152 631 / 241 701 / 173 539 / 323 443 / 389 616 / 251 606 / 266

random 0.023 -0.002 -0.002 0.017 0.001 -0.002 -0.002 0.028 -0.051 -0.045
BLEU 0.135 0.048 0.142 0.098 0.162 0.125 0.128 0.097 0.108 0.171
chrF 0.16 0.083 0.172 0.092 0.202 0.106 0.162 0 0.173 0.119

BERTScore 0.139 0.076 0.173 0.051 0.209 0.131 0.121 0.046 0.173 0.148
COMET-DA 0.193 0.122 0.194 0.086 0.187 0.111 0.125 0.108 0.124 0.12

COMET-MQM 0.096 0.011 0.025 0.017 0.062 -0.023 -0.001 -0.05 0.079 0.054
UniTE 0.068 -0.031 -0.002 -0.014 0.043 0.047 -0.006 0.056 -0.017 -0.023

COMET-QE-DA 0.178 0.084 0.142 0.068 0.125 0.115 0.066 0.049 0.063 0.11
COMET-QE-MQM 0.099 0.05 -0.013 0.025 0.09 -0.025 0.041 -0.077 0.068 0.07

UniTE-QE 0.065 -0.031 0.012 -0.008 0.035 0.069 0.073 0.056 -0.009 -0.069

Table 3: MCC for different metrics when the extrinsic task is extractive question answering where the model is
trained for English question. The good/bad are the number of examples in the respective labels for the classification
task. Metrics have poor performance on the classification task as most of them report MCC < 0.3

half of which contains English as one of the lan-418

guages in the translation pair. We also note that419

our dialogue state tracking and question answering420

tasks only have the task specific language as En-421

glish. Similar to Kocmi et al. (2021), we consider a422

subset of results from the semantic parsing task to423

investigate if the use of multilingual embeddings424

in these trained metrics allows generalization to425

unseen language pairs. We consider five different426

types of language pairs in the zero-shot setting. (i)427

en-es is unseen language pair when the source lan-428

guage is en (ii) pt-en is unseen language pair when429

the target language is en (iii) es-de is the pair where430

the two languages are from different language fam-431

ilies but share the same script, (iv) zh-fr contains432

source language with logogram script and (v) de-433

zh contains target language with logogram script.434

We report the difference between the chosen MT435

metric and the random baseline for different lan-436

guage pairs in Table 4. We find that trained metrics437

have similar performance on unseen languages ex-438

cept UniTE metrics for en-es and UniTE reference439

based for pt-en. Metrics based on string matches440

have similar (and sometimes better) performance441

than the trained metrics. Reference-based metrics442

have higher gains than their respective reference-443

free counterparts. As the metrics already have a444

poor performance on the seen languages, we cannot445

verify if this similar poor performance of unseen446

language pairs is an indicator of generalization. We447

also find that the metrics have higher gains in the448

case of zh-fr where the translation is of poor quality449

for the end task. This is expected as the errors in450

these translations will be easier to detect.451

4.3 Finding the threshold452

Interpreting system level scores provided by au-453

tomatic metrics requires additional context such454

as the language pair of the machine translation455

src-tgt en-es pt-en es-de zh-fr de-zh
examples 193/92 171 / 172 193 / 196 53/275 144 / 183
random 0.455 0.466 0.479 0.384 0.503

COMET-DA 0.15 0.089 0.187 0.283 0.145
COMET-MQM 0.146 0.143 0.152 0.274 0.159

UniTE -0.031 -0.039 0.205 0.121 0.094
COMET-QE-DA 0.089 0.061 0.117 0.137 0.036

COMET-QE-MQM 0.109 0.118 0.097 0.118 0.053
UniTE-QE -0.022 0.065 0.152 0.194 0.014

Table 4: Difference of macro F1 scores of different
metrics and random baseline with semantic parsing
as extrinsic task to check generalisation of metrics .
The top row has absolute macro F1 scores for the ran-
dom baseline and every other row is ∆ = metricF1 −
randomF1. The first language in the pair is the source
language of the task-specific model. The second lan-
guage is the target language used in the translate test
setting. The metrics show similar yet poor performance
to Table 2.

model or another MT system for comparison 3. In 456

this classification setup, we rely on interpreting 457

the segment-level score to determine whether the 458

translation is suitable for the downstream task. We 459

observe that finding the right threshold to identify 460

if a translation needs correction is not straightfor- 461

ward. 462

We report the mean and standard deviation of 463

best thresholds for every language pair for every 464

metric in Table 5. Surprisingly, the thresholds are 465

not consistent and off from the midpoint in the 466

case of bounded metrics - BLEU (0-100), chrF 467

(0-100), and BERTScore (0 to 1). The standard 468

deviations across the table indicate that the thresh- 469

old varies greatly across language pairs. We find 470

that thresholds of these metrics are also not trans- 471

ferable across tasks. The COMET metrics except 472

COMET-DA have smaller standard deviations. By 473

design, the range of COMET metrics in this work 474

is unbounded. However, as discussed in the theo- 475

retical range of COMET metrics 4, empirically, the 476

3https://github.com/Unbabel/COMET/issues/18
4https://unbabel.github.io/COMET/html/faqs.
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metric SP QA DST
chrF 44.0 ± 13.7 53.9 ± 07.8 58.0 ± 10.6

BLEU 15.5 ± 08.8 16.1 ± 04.9 27.5 ± 08.3
BERTScore 0.50 ± 0.21 0.54 ± 0.08 0.79 ± 0.15
COMET-DA 0.21 ± 0.35 0.30 ± 0.23 0.75 ± 0.13

COMET-MQM 0.03 ± 0.01 0.06 ± 0.01 0.04 ± 0.01
UniTE 0.01 ± 0.37 -0.4 ± 0.38 0.43 ± 0.10

COMET-QE-DA 0.02 ± 0.07 0.02 ± 0.01 0.11 ± 0.02
COMET-QE-MQM 0.11 ± 0.01 0.00 ± 0.04 0.12 ± 0.01

UniTE-QE -0.07 ± 0.48 -0.24 ± 0.13 0.36 ± 0.16

Table 5: Mean and standard deviation of the best thresh-
old on the development set for all the language pairs
in the respective extrinsic tasks. The thresholds are not
consistent across language pairs and across tasks for
both bounded and unbounded metrics. QA is question
answering. DST=Dialogue state tracking. SP is seman-
tic parsing

range for COMET-MQM is found to lie between477

-0.2 to 0.2 which questions whether this small stan-478

dard deviation is an indicator of the consistency479

of the threshold. Some language pairs within the480

COMET metrics have negative thresholds. We also481

find that some of the use cases under the UniTE482

metrics have a mean negative threshold indicating483

that good translations can have negative UniTE484

scores. Similar to Marie (2022), we suggest that485

notion of negative scores for good translation only486

for certain language pairs is counter-intuitive as487

most NLP metrics tend to produce positive scores.488

Thus, we find that both bounded and unbounded489

metrics discussed in this work do not provide seg-490

ment level scores whose range can be interpreted491

meaningfully across both tasks and different lan-492

guage pairs.493

4.4 Reference-based metrics in online setting494

In an online setting, we don’t have access to ref-495

erences at test time. To test the effectiveness of496

reference-based methods in this setting, we con-497

sider translating the translation back into the source498

language. While evaluating the reference-based499

methods on the new setup, the language pair flips500

the direction; the srcnew is mtold, mtnew is the501

translation of mtold, and refnew is srcold. We502

generate these new translations using the mBART503

translation model (Tang et al., 2020). We report504

these results for the dialogue state tracking task505

in Table 6. The table calculates the difference be-506

tween the MCC values of the round trip translation507

task and the MCC values reported in Table 1.508

We find that most metrics improve their perfor-509

mance by using the new reference except when510

html

Method zh de ar ru
BLEU 0.078 0.025 -0.065 -0.103

chrf 0.314 0.211 0.128 -0.018
BERTScore 0.313 0.229 0.15 -0.017
COMET-DA 0.158 0.14 0.075 -0.105

COMET-MQM 0.18 0.167 0 -0.115

Table 6: MCC scores of reference based metrics for the
extrinsic task of dialogue state tracking. The setup sim-
ulates an online setting where gold standard references
are not available. Instead, the translation is translated
back into the target language. MCC scores improve in
this setup over Table 1 as long as the quality of machine
translation is high (zh, de, ar).

the target language is ru. This is reassuring that 511

as reference-based metrics improve, their deploy- 512

ment in a reference-less setting can still be use- 513

ful when the quality of the translation outputs is 514

high. However, their correlation coefficients are 515

within the range of negligible correlation. Using 516

reference-based metrics in an online setting comes 517

with the overhead of producing another transla- 518

tion. Using ru as input language has the lowest 519

performance on the downstream task indicating the 520

machine translation quality of ru-en translation is 521

inferior. The back translation from en to ru is likely 522

to add additional errors to the existing erroneous 523

translation. This cascading of errors confuses the 524

metric and it can mark a perfectly useful transla- 525

tion from ru-en as “bad” due to the error present 526

in the en-ru translation. For example, in the ru-en 527

case, COMET-MQM has a false negative rate of 528

0.796 in the round-trip translation setup compared 529

to 0.097 when the human reference is used instead. 530

Thus, this setting is likely to fail when the machine 531

translation models generate poor-quality outputs. 532

4.5 Qualitative evaluation 533

The development of machine translation metrics 534

largely caters towards only the intrinsic task of eval- 535

uating the quality of a translated text in the target 536

language. The severity to penalize a translation 537

error is dependent on the guidelines released by the 538

organisers of the WMT metrics task or the design 539

choices of the metric developers. However, dif- 540

ferent downstream tasks will demonstrate varying 541

levels of sensitivity to the same machine transla- 542

tion errors (Zhang et al., 2022). For example, the 543

fluency of a translation is likely to be more cru- 544

cial when translating an utterance from the system 545

to the user than translating from the user to the 546

system. 547
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To quantify which translation errors are most548

crucial to the respective extrinsic tasks, we conduct549

a qualitative evaluation of the outputs of the respec-550

tive classification tasks. We consider the behaviour551

COMET-DA for this case study. We annotate at552

least 100 examples containing the false positives553

and the false negatives for semantic parsing when554

the parser is trained in English and the target lan-555

guage input is Chinese translated into English. We556

annotate the MT errors (if present) in these exam-557

ples based on the MQM ontology.558

For semantic parsing, we find that 54% of the er-559

rors belong to mistranslation. The other MT errors560

belong to addition(2%), omission (6%), and fluency561

(8%). The rest 30% of the errors did not have any562

MT errors (none). These translations were para-563

phrases of the references which were undetected564

as correct translations by the metric; except in six565

instances where the parsing model could not handle566

the diverse input. Within mistranslation, 93% of567

the errors are sensitive to the downstream task; like568

named entity errors. We observe that fluency error569

in the translation largely does not have an impact570

on the parsing task.571

We also find that approx 20% of the errors made572

by the classification model arise from the task-573

specific model. For example, the MT model uses574

an alternative term of shuttle instead of round-trip575

while generating the translation for the reference576

“show me round trip flights from montreal to or-577

lando”. The semantic parser fails to generalise578

despite being trained with mBART.579

4.6 Ablation580

We look at some ablations studies dependent on the581

nature of the end tasks.582

4.6.1 Cascading errors in dialogue583

The results reported in Table 1 illustrate a scenario584

where the automatic translation is applied on ev-585

ery utterance. The dialogue state tracking model586

includes the history of the conversation while pre-587

dicting the current state. Thus, if an entity is in-588

correctly translated at the start of the conversation,589

it is likely to produce cascaded errors on the dia-590

logue state tracking task. To eliminate this effect of591

cascading errors, we also consider a setting where592

every utterance except the current utterance uses593

the gold standard translation. We then perform the594

classification task and report these results in Table595

7.596

The number of Good examples has increased597

Metric \Lang zh de ar ru
Good / Bad 2542/ 719 2876/385 2699/562 2563/698

random 0 0.044 -0.019 0.005
BLEU 0.067 0 0.144 0.03

chrF -0.058 0 0 -0.009
BERTScore 0 0.012 -0.02 0.048
COMET-DA 0.076 -0.011 -0.023 0.026

COMET-MQM -0.038 -0.023 -0.024 -0.051
UniTE -0.058 -0.036 -0.032 -0.067

COMET-QE -0.058 -0.024 -0.04 -0.048
COMET-QE-MQM -0.057 0.033 -0.021 -0.069

UniTE-QE -0.069 -0.012 -0.04 -0.072

Table 7: MCC scores for metrics when extrinsic task
is dialogue state tracking when the dialogue history is
gold translations and only the context is automatically
translated. Number of bad examples decrease compared
to Table 1 indicating cascading of errors due to incor-
rect translations in the dialogue history. Metrics also
perform poor than Table 1.

over Table 1 confirming that using machine trans- 598

lation directly without correction causes cascading 599

errors in state tracking. However, there is a drop in 600

the performance for most metrics as compared to 601

Table 1. 602

4.6.2 Effect of true casing 603

The original ATIS dataset (Hemphill et al., 1990) 604

in English is available only in lowercase. How- 605

ever, contemporary machine translation models are 606

trained to produce true case outputs irrespective of 607

the input. We investigate whether this mismatch 608

of casing in the hypothesis and reference causes a 609

change in the performance of the reference-based 610

metrics on the downstream task. We truecase the 611

references using an automated tool. Note, some 612

entities are still in lowercase after running the tool. 613

We report these results in Table 8 which contains 614

the F1 difference between the scores computed 615

using the truecase references and the lowercase 616

references. 617

We find that both surface form overlap based 618

and neural metrics have a difference in the perfor- 619

mance but there is no clear trend if using true case 620

reference is beneficial for the end task. The effects 621

of using correct casing are most beneficial for the 622

de-en and fr-en semantic parsing tasks. 623

5 Recommendations 624

Our experiments suggest that evaluating MT met- 625

rics on the segment level for MT metrics has con- 626

siderable room for improvement. We make some 627

recommendations based on our observations- 628

Explicit error Analysis: We reinforce the pro- 629

posal of using the MQM scoring scheme for eval- 630
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Metrics de fr pt es zh
BLEU 0.003 0.055 -0.05 0.002 -0.033
chrF 0.014 0.034 -0.039 -0.014 -0.034

BERTScore 0.013 0.039 -0.009 -0.005 -0.037
COMET-DA 0.018 0.029 0.075 -0.051 -0.021

COMET-MQM 0.078 0.082 -0.008 -0.015 -0.027
UniTE -0.004 0.305 0.032 -0.093 0.082

Table 8: We report the difference between F1 scores
of different metrics for the classification task when the
reference is in the (synthetic) truecase v/s lowercase for
reference based metrics. The extrinsic task is semantic
parsing on the MultiATIS++ dataset where the semantic
parser is trained in English. The coloumns report the
F1 difference of the respective target language. Casing
does not have a conclusive effect on the reference based
metrics. ∆ = truecase− lowercase

uating MT outputs as introduced in Freitag et al.631

(2021a). As seen in Section 4.5, different tasks632

have varying tolerance to different MT errors. With633

explicit errors marked per MT output, future clas-634

sifiers can only be trained on a subset of human635

evaluation data containing errors most relevant to636

the downstream application.637

Combination of metrics: We do not find a “win-638

ning metric” across our tasks (See Section 4). We639

also find that neural metrics have performance sim-640

ilar to surface overlap metrics. Similar to Amrhein641

et al. (2022), we recommend using a combination642

of different families of metrics to judge the usabil-643

ity of the MT output for the downstream task.644

Adding diverse references: From Section 4.5,645

we find that both the neural metric and the task-646

specific model are not robust to paraphrases. Baw-647

den et al. (2020) proposed automatic paraphrasing648

of references to improve the coverage for BLEU.649

We also recommend the inclusion of diverse ref-650

erences through automatic paraphrasing or data651

augmentation during the training of neural metrics.652

Produce labels instead of scores: From Sec-653

tion 4.3, we find that a single score from the met-654

ric is difficult to interpret the quality of the pro-655

duced MT translation. We recommend explor-656

ing whether segment-level MT evaluation can be657

approached as an error classification task instead658

of regression. Specifically, whether the words in659

the source/hypothesis can be tagged with explicit660

error labels. The MQM annotations released by661

Freitag et al. (2021a) contain spans for erroneous662

words and the corresponding types of errors which663

can help set up the classification task. Similarly,664

the post-editing datasets (Scarton et al. (2019);665

Fomicheva et al. (2022) , inter alia) also provide666

a starting point. An interesting exploration in this 667

direction is the work by Perrella et al. (2022) that 668

treats MT evaluation as sequence-tagging problem 669

i,e: words in the candidate translation are tagged 670

with ‘minor” or “major” error and then converted 671

into a weighted score. We hope to incorporate these 672

techniques in developing future evaluation regimes 673

when using MT as an intermediate step in extrinsic 674

tasks. 675

6 Conclusion 676

We evaluated nine different metrics on the ability 677

to detect errors in generated translations when ma- 678

chine translation is used as an intermediate step 679

for three extrinsic tasks - dialogue state tracking, 680

question answering, and semantic parsing. We 681

found that segment level scores provided by all 682

the metrics show negligible correlation with the 683

success/failure outcomes of the end task across 684

different language pairs. We attributed this result 685

to segment scores produced by these metrics be- 686

ing uninformative and that different extrinsic tasks 687

demonstrate different levels of sensitivity for dif- 688

ferent MT errors. We made recommendations to 689

predict error types instead of error scores to facili- 690

tate the use of MT metrics in downstream tasks. 691
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Miloš Stanojević, Amir Kamran, Philipp Koehn, and963
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