
Interpreting User Requests in the Context
of Natural Language Standing Instructions

Nikita Mogheγ∗ Patrick XiaΦ Jacob AndreasΦ
Jason EisnerΦ Benjamin Van DurmeΦ Harsh JhamtaniΦ

γSchool of Informatics, University of Edinburgh
ΦMicrosoft Semantic Machines

nikita.moghe@ed.ac.uk hjhamtani@microsoft.com

Abstract

Users of natural language interfaces, generally
powered by Large Language Models (LLMs),
often must repeat their preferences each time
they make a similar request. To alleviate this,
we propose including some of a user’s pref-
erences and instructions in natural language –
collectively termed standing instructions – as
additional context for such interfaces. For ex-
ample, when a user states I’m hungry, their
previously expressed preference for Persian
food will be automatically added to the LLM
prompt, so as to influence the search for rele-
vant restaurants. We develop NLSI, a language-
to-program dataset consisting of over 2.4K di-
alogues spanning 17 domains, where each di-
alogue is paired with a user profile (a set of
user-specific standing instructions) and corre-
sponding structured representations (API calls).
A key challenge in NLSI is to identify which
subset of the standing instructions is applica-
ble to a given dialogue. NLSI contains diverse
phenomena, from simple preferences to interde-
pendent instructions such as triggering a hotel
search whenever the user is booking tickets to
an event. We conduct experiments on NLSI
using prompting with large language models
and various retrieval approaches, achieving a
maximum of 44.7% exact match on API pre-
diction. Our results demonstrate the challenges
in identifying the relevant standing instructions
and their interpretation into API calls.

1 Introduction

Large Language models (LLMs) such as such
as GPT-3 (Brown et al., 2020), GPT-4 (OpenAI,
2023), and Llama-2 (Touvron et al., 2023) are in-
creasingly being used with tools and APIs (Schick
et al., 2023; Qin et al., 2023) to unlock additional
functionalities for users. For example, ChatGPT
allows several external plugins such as OpenTable
for searching and reserving restaurants, booking

∗Work done while interning at Microsoft

Figure 1: Parsing an utterance into a structured output,
in the presence of a user-specific set of standing instruc-
tions. A model for the task needs to identify (explicitly
or implicitly) the subset of instructions applicable to the
utterance and interpret the utterance into API calls.

travel through Expedia or solving math problems
with Wolfram.1

As the same interface provides multiple services,
these applications must learn to identify which ser-
vice the user is seeking while maintaining prefer-
ences across diverse domains that are unique to
each user. Understanding such preferences can aid
in personalising the user experience by providing
tailored responses, increased accuracy in recom-
mendations and saving user time.

However, in most cases, users have to verbalise
their preferences in detail during the interaction, in-
cluding for repeated requests. For example, a user
trying to find a restaurant might have to interact
for multiple turns with an LLM-powered dialogue
system to arrive at their preferred restaurant cui-
sine and location. Such interactions can become
tedious, leading to a poor user experience.

Past work has explored learning preferences

1https://openai.com/blog/chatgpt-plugins

https://openai.com/blog/chatgpt-plugins

from user-system interactions over time (Salemi
et al., 2023; Micarelli et al., 2007). However, pref-
erences may be hard to learn, or a system might
need a lot of data to learn from. Moreover, these
learnt preferences are implicit and usually cannot
be interpreted or edited by the user.

We propose incorporating personalised standing
instructions as additional context while interpret-
ing a user’s request. Standing instructions are user-
provided2 natural language statements to change or
prescribe system behaviour under certain circum-
stances. For example, in Fig. 1, the user wants
to look for some restaurants around them. In the
absence of standing instructions, the system will
likely proceed by asking where the user is located
followed by their favourite cuisine. By looking up
the relevant standing instructions for restaurants,
the system can directly search for Persian restau-
rants in San Leandro, saving the user’s time as
well as providing customised/localised recommen-
dations. Using explicit NL instructions provides
both control and interpretability. A user can inspect
and edit their standing instructions, especially for
preferences that change over time. Further, the gen-
erated outputs can be directly linked to the relevant
standing instructions, improving the user’s trust in
the system (Liu et al., 2023).

Our work is related to Gupta et al. (2022), which
conditions a dialogue model’s response on a set
of developer guidelines. Their work focuses on
controlling response generation in open-domain
dialogue systems with a focus on reducing toxicity
and enhancing safety. More recently, Open AI
released “Custom Instructions”,3 which lets users
set preferences for all their future conversations.
However, not much is known about how it operates,
and no reported evaluations of its usage have been
documented.

This paper makes the following contributions:

1. We systematically study the incorporation of
standing instructions in a task-oriented setup.
We develop and introduce NLSI (Natural Lan-
guage Standing Instructions), where every ex-
ample consists of a conversation between the
user and a dialogue agent and a collection of
standing instructions (user profile) that are as-
sociated with API calls whose arguments are

2Such standing instructions could also be inferred from
user-agent interactions. However, models for inferring instruc-
tions are out of the scope of this paper.

3https://openai.com/blog/
custom-instructions-for-chatgpt

inferred from the context of the conversation
and the relevant standing instructions.

2. We investigate six reasoning types for using
standing instructions that range from the in-
clusion of simple attributes to more complex
situations like the user making new choices
over existing preferences, the user proposing
multiple preferences, etc. These reasoning
types introduce challenges pertaining to

(a) identifying which subset of standing in-
structions is relevant for the conversa-
tional context. Whether an instruction is
relevant or not is a function of user utter-
ance and past turns, and requires multi-
hop and cross-domain reasoning.

(b) effectively incorporating standing in-
structions while inferring the structured
API calls and their attributes. This may
require joint reasoning over the dialogue
and the relevant standing instructions,
as well as dealing with any conflicts be-
tween user utterance and instructions.

3. We benchmark the dataset on a combination of
methods involving the selection and interpreta-
tion of standing instructions. We observe that
our LLM-based methods are far from perfect,
raising new questions in retrieval, reasoning,
and semantic parsing.

2 Task Overview

We are interested in interpreting a user utterance
into API calls in light of user-specific standing in-
structions (Figure 1). Consider a conversational
context x, which consists of dialogue history be-
tween the user and the agent (if any) and the user’s
current utterance. We assume a user profile u con-
sisting of a sequence of natural language instruc-
tions u1, u2, ...uM . We consider a selection task
to obtain a set of relevant (to the given context
x) standing instructions z from the user profile u
(z ⊆ u). The interpretation task then is to predict
API calls y based on the conversational context and
the relevant subset of standing instructions z. We
assume a schema s that lists the valid API method
names and their keyword arguments (slots). The
tasks can be modeled as follows:

z ∼ p(· | x, u)
y ∼ p(· | x, z, s)

https://openai.com/blog/custom-instructions-for-chatgpt
https://openai.com/blog/custom-instructions-for-chatgpt

PLAIN MULTIHOP MULTIPREFERENCE

Relevant
Standing
Instructions
(z)

>I always go to Santa Rosa if I’m looking
for Movies.
>I like fantasy movies the best.

>If I’m looking for a flight, American Air-
lines is my go-to.
>If I’m flying American Airlines, check for
Economy seating class.

>If I ask for Events, my preferred event
type is Music.
>When the event type is Music, search for
Blues as the category.
>Search for the event name Greensky Blue-
grass if the category is Blues.
>If I ask for Events, my preferred event type
is Sports.

Conversation
(x)

User: I want to go out to watch a movie,
please help me find a good one.

User: Can you get on and get me a round
trip ticket?
Agent: Where will you go? Where are you
coming from?
User: I’m going to SFO from New York
City.

User: My schedule is free today and I plan
to go to an event in Seattle, WA. I want to
look for events in that area.

API calls (y)

GetMovies(
genre=" fantasy",
location ="Santa Rosa")

GetFlights(
destination ="SFO",
origin ="New york",
airlines =" American

Airlines",
seating_class =" Economy ")

GetEvents(
city="Seattle , WA",
event_type ="Music",
category ="Blues",
event_name =" Greensky

Bluegrass ")
GetEvents(

city="Seattle , WA",
event_type =" Sports ")

CONFLICT NONEAPPLICABLE MULTIDOMAIN

User Profile
(u)

>When I request Restaurants, I prefer Ital-
ian cuisine.
>If I’m looking for a doctor, I’d rather have
a General Practitioner.
>If I’m opening a bank account, I want it to
be a savings account.
>I’d like to get a Doctor in San Rafael if I
can.
. . .

>Request Restaurants with Filipino cuisine
as my preference.
>Request Music by Iggy Azalea as my pre-
ferred artist.
>If I’m looking to go to the movies, my go-
to theatre is Airport Stadium Cinemas.
>If I’m looking for a flight, my go-to airline
is Alaska Airlines.
>Request Events, specifically Sports events.

>When I request Movies, I typically enjoy
ones that are comedic.
>My first choice when requesting Travel is
Vegas
>When it comes to Hotels, I prefer ones that
are rated 1-star.
>My go-to theater for Movies is AMC Bay
Street.
>If I’m looking into Travel, I should also
check out Hotels
>I’d like my travel to be kid-friendly.
. . .

Relevant
Standing
Instructions (z)

>I’d like to get a Doctor in San Rafael if I
can. None

>My first choice when requesting Travel is
Vegas
>If I’m looking into Travel, I should also
check out Hotels.
>When it comes to Hotels, I prefer ones that
are rated 1-star.
I’d like my travel to be kid-friendly.

Conversation
(x) User: I need to find a Gynecologist

User: Can you help me find some attrac-
tions to see?
Agent: Where should I look?
User: How about in KL?

User: User: Any good tourist traps out
there?

API calls (y)

GetDoctors(
type=" Gynecologist",
location ="San Rafael ")

GetTravel(
location ="KL")

GetTravel(
good_for_kids ="True"
location ="Vegas")

GetHotels(
average_rating ="1",
location ="Vegas")

Table 1: Some examples from NLSI. User profile is not shown in all examples for brevity. (1) In PLAIN,
the instructions usually represent a domain matching problem. (2) In MULTIHOP, note that the seating class
attribute Economy is dependent on choosing the instruction with American Airlines. (3) For the example for
MULTIPREFERENCE, as there are two preferences for the same attribute event_type, there are two separate API calls.
Further, the API call with event_type Music has additional attributes. (4) In CONFLICT, user requests for an attribute
that is against the standing instructions (“Gynecologist” v/s “General Practionier”). (5) In NONEAPPLICABLE,
the user makes a request which is not affected by the standing instructions. (6) In MULTIDOMAIN, the examples
contain an instruction which requires invoking a hotel search for the same location when user requests for places to
visit.

3 Dataset: NLSI

Existing related datasets have focused on generat-
ing safer responses in open-domain dialogue via
natural language guidelines (Gupta et al., 2022),
personalized text generation by conditioning on a
set of past user-written documents like emails or re-
views (Salemi et al., 2023), or conditioning on past
user feedback for tasks such as ethical reasoning
and word scrambling (Madaan et al., 2022). Due
to the lack of datasets that study the use of natural
language standing instructions in a language-to-
program setup, we created NLSI.

3.1 Reasoning Types

In the context of standing instructions,various types
of reasoning could be needed to predict the API
calls. Following a single standing instruction may
be easier than composing and reasoning over sev-
eral instructions. Furthermore, reasoning across
several instructions in the same domain, like book-
ing hotels, may be easier than across domains.
Thus, to enable comparisons at different difficul-
ties, we designated six reasoning types for NLSI.
While these are not exhaustive, they allow us to
systematically study a range of situations ranging
from simple domain matching to more complex
reasoning (examples in Table 1):

NONEAPPLICABLE For these examples, no
standing instructions from the user profile are re-
quired for interpreting the user’s utterance (z = ∅).

PLAIN These examples use the standing instruc-
tions directly: each argument can be predicted from
a single standing instruction. All the relevant stand-
ing instructions, z, belong to the same domain.

MULTIHOP These examples contain at least one
standing instruction in z that is deemed relevant
to the dialogue x by virtue of presence of another
standing instruction. These are of the form “if A
then B” and “if B then C”, where A, B, and C are
slot names from the same domain. These examples
test multi-hop reasoning abilities of the model.

MULTIDOMAIN The examples are similar to
MULTIHOP except that there is at least one rele-
vant instruction in z that links two domains. These
example types typically involve triggering of APIs
from an additional domain while being consistent
on any shared arguments such as location. For ex-
ample, invoking a hotel search when user requests

for places to visit (Table 1). These examples chal-
lenge multi-domain understanding in addition to
multi-hop reasoning.

MULTIPREFERENCE These examples contain
standing instructions catering towards multiple
preferences for the same attribute. The interpre-
tation task for such examples requires placing mul-
tiple API calls respecting the different constraints
(Music or Sports in the example in Table 1). Note
that the preferences may interplay differently with
other instructions, like in our example, Blues and
Greensky Bluegrass are only required in the call
about Music.

CONFLICT These examples include instructions
in the profile u that conflict with the last user utter-
ance in the dialogue x. The model should grace-
fully handle such situations and give preference to
the user’s request.

Examples can contain standing instructions
demonstrating multiple reasoning types. In our
work, we associate each example with a single type
as based on the above ordering (a type occurring
later in the above ordering gets precedence). We
provide an example of each type in Table 1.

3.2 Dataset Creation

We constructed NLSI in a semi-automatic fash-
ion by extending Schema Guided Dataset (SGD)
(Rastogi et al., 2020). SGD consists of 16K multi-
turn conversations across 20 domains like airlines
or restaurants. We chose SGD because the dia-
logues in that dataset include natural and rich con-
versations with diverse reasoning types, and the
accompanying annotations make it possible to con-
struct the ground truth API labels. We note that the
process outlined intends to repurpose an existing
dataset for studying the selection and interpretation
tasks. In a real-world setting, a user might provide
explicit preferences through another interface, or
else such preferences would be inferred from the
user’s continuous interaction with the system.

Extracting standing instructions: We first iden-
tified which slots within the SGD schema can be
translated into standing instructions based on the
slot descriptions provided in the original dataset.
For example, while booking movie tickets, the-
atre_name is inclined to be a persistent user pref-
erence, hence it can be part of a standing instruc-
tion. In contrast, movie_title or date of booking the
movie ticket should not be converted to standing in-

structions, as these are likely to change every time
the user interacts with the system.

Each conversation in SGD originates from a se-
ries of rules consisting of actions that a user or
agent should take. For example, Greet() → In-
form(location) → Request(cuisine) → Inform(date)
→ Offer(restaurant_name). These actions were
then paraphrased into dialogues which constitute
the examples in SGD. We reverse-engineer the orig-
inal SGD creation process to construct the standing
instructions.

To convert an SGD dialogue to an NLSI dia-
logue with standing instructions, we retained the
first 1 or 3 turns as the conversational context x,
and converted the remaining turns into the rele-
vant standing instructions z. (We ignored any
turns that could not be converted into instruc-
tions.) For example, the second NLSI example
in Table 1 was derived from an SGD dialogue
that had originally continued with natural lan-
guage turns that specified airlines=“American
Airlines”, seating_class=“Economy”. Those
remaining turns are not needed to predict y from
x provided that the standing instructions z can be
detected as relevant to that prediction.

Revisiting the example SGD series of rules
mentioned earlier, the dialogue corresponding to
Greet() and Inform(location) becomes part of the
conversation context x and Request(cuisine) and
Offer(restaurant_name) become the standing in-
struction. The instruction is templated as “If I ask
about Restaurants, my preferred cuisine is Italian”.
As date is a non-instructional slot, we exclude it.
Additional details on how examples for various
reasoning types are constructed are discussed in
Appendix A.

Forming user profiles: The above process pro-
vides us with the relevant standing instructions z
for the given example from SGD, but these are only
part of the full user profile u. A user will have addi-
tional preferences that are not relevant to the given
example. To emulate this, for the given example,
we create u by augmenting z with M randomly
sampled instructions from other examples.4 These

4We drew M uniformly from the range [3, 12]. Note that
owing to this augmentation procedure, the examples in our
synthetic dataset are not IID; they may be artificially similar
to one another (in addition to being artificial in other ways). In
particular, we drew the distractor instructions before splitting
the dataset into train/dev/test, so training examples were con-
structed with some information from the test set. Given this
dataset, however, our experiments followed the usual protocol
of holding out the test set while constructing our systems.

“distractor” instructions are sampled from domains
unrelated to the current domain(s).

Post-processing of instructions: We also in-
cluded several rounds of pre-checks and post-
processing on the dataset to remove undesirable
or unrealistic situations that arise either through
the noise in the base dataset or our extraction
process like domain mismatch (“Play music” fol-
lowed by “Book me a bus ticket”). To make the
standing instructions more natural and diverse, we
paraphrased the templates using LLMs (GPT-3.5).
Please also see Appendix A for more details.

API calls: The outputs of the interpretation task
are API calls y, in line with the recent works of
integrating LLMs with tools and plugins (Schick
et al., 2023; Qin et al., 2023). The API calls
are of the format GetDomain(slot_1=value_1,
slot_2=value_2). The argument names and val-
ues are derived from dialogue states in the SGD
examples, which are either explicitly mentioned
in the user’s utterance or provided in the standing
instructions.

3.3 Dataset Statistics

We obtained 2441 examples through the above pro-
cess spanning 17 domains. We construct a balanced
test set based on the different reasoning types – 340
per reasoning type type, leading to a total of 2040
examples in test. The train set contains at most
10 examples per domain with a minimum of five
examples per reasoning type type, for a total of 150
examples. The remaining examples are a part of
the development set (251). There are 10.4 ± 3.0
instructions on average in a user profile (min: 3,
max: 22) and there are 2.1 ±1.7 relevant standing
instructions per example in the dataset (min: 0,
max: 10). As there are 17 domains, there are 17
function calls corresponding to it.

4 Methods

Given the recent success of using LLMs to gen-
erate outputs in structured prediction tasks (Roy
et al., 2023; Schick et al., 2023; Heck et al., 2023),
we resort to using an LLM-based method to in-
terpret a user utterance into a structured API call.
We use in-context learning (Dong et al., 2023) by
providing K demonstration examples, where K
is tuned on the dev set. These demonstration ex-
amples are obtained by retrieving examples from
the training set that are most similar to the current

Task Specific
Instructions

+
Schema

User Profile

User Utterance

API calls

User Profile

User Utterance

API calls

Task Specific
Instructions

+
Schema

Gold
Standing Instructions

User Utterance

API calls

Relevant
Standing Instructions

User Utterance

API calls

Task Specific
Instructions

+
Schema

User Profile

User Utterance

Relevant
Standing Instructions

API calls

User Profile

User Utterance

Relevant Standing
Instructions

API calls

{K
examples

{Test
example

Prediction

Task Specific
Instructions

User Profile

User Utterance

User Profile

User Utterance

Relevant
Standing Instructions

Gold
Standing Instructions

DIRECT SELECT-AND-INTERPRET

Selection

SELECT-THEN-INTERPRET

Interpretation

Figure 2: Illustration of different prompting methods. The blocks in red are the expected output generation and every
other block is part of the input. The green bits are repeated K times, providing K demonstrations for in-context
learning. DIRECT Interpretation conditions the generation of API calls on the user profile and user utterance.
SELECT-AND-INTERPRET requires the generation of the appropriate standing instructions based on user profile and
user utterance followed by API generation. SELECT-THEN-INTERPRET receives the predicted standing instructions
from a separate Selection Model (see left) in addition to the user utterance and then generates the API calls. The
selection step only generates the standing instructions based on the user profile and the user utterance.

dialogue of the test example utterance using the
BM25 similarity measure (Robertson et al., 1994)
as in Rubin et al. (2022); Roy et al. (2023). The
examples are arranged in a best-first order. We de-
scribe the different paradigms (Fig. 2) used for the
interpretation task by selecting the instructions im-
plicitly (DIRECT Interpretation), jointly(SELECT-
AND-INTERPRET) or explicitly (SELECT-THEN-
INTERPRET).

4.1 Direct Interpretation

In DIRECT method, we do not have any explicit
selection of standing instructions from the user pro-
file, and directly interpret the dialogue context into
API calls. The input to the LLM (Fig. 2) consists of
(i) instructions about the interpretation task includ-
ing the information about using standing instruc-
tions, (ii) the schema of the dataset (list of functions
and arguments that can be used when generating
API calls) s, (iii) user profile u, (iv) user’s dialogue
x, and (v) API calls y. Of these, (iii)-(v) are re-
peated for every demonstration example and the
test example only consists of the user profile and
the dialogue. We also include the list of categor-
ical slots and their categories as well as a list of
boolean slots while describing the schema. This
setup allows us to evaluate the ability of implicit
selection of the relevant standing instructions for

the interpretation task.

4.2 Joint Selection and Interpretation

Inspired by the effectiveness of techniques like
Chain-of-Thought prompting (Wei et al., 2022)
across several tasks (Chu et al., 2023), we also
treat the direct interpretation task with a two-step
approach: generate the relevant standing instruc-
tions z ⊆ u and then generate the corresponding
API calls y.

In addition to potentially improving the accu-
racy, such explicit selection can enhance the trans-
parency of the system by exposing the relevant
subset of instructions to the user. To implement
the method, the input prompt to the LLM is modi-
fied such that the demonstration examples include
the set of all standing instructions u, the relevant
standing instructions z, and then the API calls y
(Fig. 2). We refer to this method as SELECT-AND-
INTERPRET.

4.3 Selection Then Interpretation

In this method, we treat selection and interpreta-
tion with two separate models (see Section 2). The
selection model is not limited to an LLM-based
approach. The interpretation model is similar to
the one described for DIRECT, except that instead
of user profile, the relevant standing instructions

are used directly. By decoupling the selection task
from the interpretation task, we can explore popu-
lar methods of information retrieval for selection.
Additionally, as the user profile size increases, and
the instructions no longer fit into the prompt, a sep-
arate selection step can be convenient. We now
describe various approaches for the selection step.

ORACLE: In this setup, the selection step simply
returns the true z. This setup measures the stan-
dalone performance of the interpretation task when
given the correct standing instructions.

BM25: The selection step sets z to the N instruc-
tions from the user profile u that are most similar
to the dialogue x, where N is tuned on the dev set.
As the similarity measure, we use BM25 (Robert-
son et al., 1994). To compute the corpus statistics
used by BM25 to define similarity, each instruction
in u is considered a document, and so too is each
standing instruction from the train examples.

CONTRIEVER: As above, but replace BM25
with cosine similarity. The dialogue x and each
standing instruction in u is embedded into R768

with a pretrained sentence encoder, CONTRIEVER

(Izacard et al., 2022). Both BM25 and CON-
TRIEVER have been used as baselines in similar
past work (Gupta et al., 2022; Salemi et al., 2023).

ICL: We also experiment with using LLMs for
the selection task. The fixed input prompt to the
LLM consists of instructions for the selection task,
followed by exactly six demonstration examples,
each consisting of a dialogue x, user profile u, and
relevant standing instructions z and then the test
example (see Fig. 2, Selection). We randomly sam-
pled the six demonstration examples from the train-
ing set, one per reasoning type, and used the same
demonstration examples for all the test examples.

ICL-DYNAMIC: Similar to ICL, except that
now K demonstration examples are dynamically
retrieved from the train split by using the ones that
are similar to the dialogue in the current example
through BM25.

MULTI-PASS: In our preliminary experiments
with the previous LLM-based selection methods,
we observed that the LLMs consistently missed a
subset of relevant instructions in the MULTIHOP

and MULTIDOMAIN reasoning types. We use the
standing instructions selected in the first pass of the
selection process from ICL as part of the prompt to

perform a new selection step. We instruct the model
to find the standing instructions that are missing
from the current selection set. Though the process
can be iterated across multiple steps, in the prelim-
inary experiments we found the best results with
only one additional round of selection.

5 Experiments

We benchmark the dataset on the methods
discussed above to explain the various chal-
lenges on the benchmark. We used GPT-3.5
(text-davinci-003) and GPT-4 as the base
LLMs.

5.1 Evaluation

For the interpretation task, we report exact match
and slot-F1 of the predicted API call. For the selec-
tion task, we report the exact match and sentence-
F1. For the interpretation task, the exact match
requires getting every function call and its argu-
ments equal to the ground truth. The slot-F1 is F1
score per example and then averaged over the test
set. The order in which the API calls are generated
is not important. We post-processed the outputs to
make punctuation consistent and lowercase both
the ground truth and prediction API strings.

For the selection task, exact match and sentence-
F1 operate similarly to the above definition except
that the triples are now individual standing instruc-
tions. Similar to the API strings, all instructions are
converted to lowercase. Additionally, we excluded
any generated or selected instructions that were not
present in the user profile.

We provide some additional details about evalu-
ation in Appendix B.

5.2 Results

We report the results for the different methods in
Table 2. Overall, across all the methods, using
GPT-4 as the LLM outperforms using GPT-3.5.
Within the different ways of incorporating the
selection task with the interpretation task, we find
that DIRECT interpretation gives the best result,
closely followed by the SELECT-AND-INTERPRET

and then the ICL results when using GPT-3.5
as base LLM. This trend shifts for GPT-4 where
ICL has the best result followed by DIRECT

and then SELECT-AND-INTERPRET. Despite
the success of chain-of-thought methods in tasks
like mathematical reasoning (Wei et al., 2022)
and multi-hop question answering (Yoran et al.,

GPT-3.5 GPT-4
Instruction Subset Selection Selection Interpretation Selection Interpretation

EM↑ Instruction F1↑ EM↑ Slot F1↑ EM↑ Instruction F1↑ EM↑ Slot F1↑

DIRECT N/A N/A 32.0 66.4 N/A N/A 42.0 67.9
SELECT-AND-INTERPRET 25.9 50.3 28.0 65.9 46.5 67.6 40.2 73.2
SELECT-THEN-INTERPRET

BM25 17.3 3.0 11.2 39.7 17.3 3.0 11.8 40.8
CONTRIEVER 14.6 51.5 17.2 57.5 14.6 51.5 25.4 62.7
ICL 33.5 48.1 24.7 61.6 50.7 67.7 44.7 75.5
ICL-DYNAMIC 29.0 32.2 19.5 54.9 44.7 61.3 40.7 73.4
MULTI-PASS 24.3 52.1 20.6 57.2 67.3 70.0 * *
ORACLE N/A N/A 55.9 82.8 N/A N/A 58.5 84.1

Table 2: Results of the different methods on the NLSI dataset for the interpretation task and selection task evaluated
on (Instruction/Slot) F1 and Exact Match (EM). DIRECT has the highest score on exact match followed by SELECT-
AND-INTERPRET for GPT-3.5 while ICL is best followed by DIRECT for GPT-4. ICL is the best method within
SELECT-THEN-INTERPRET and LLM based selection methods are better. ∗ denotes that experiment was couldn’t
complete by the time of the submission.

2023), we find that generating selection step
and generating API call within the same prompt
may not be suitable for incorporating standing
instructions.

Models struggle to effectively incorporate
standing instructions The best-performing
configuration across all the methods only has
an exact match of 44.7%. Considering the
ORACLE method has an exact match of 58.5%,
there is a considerable gap in performance.
Incorporating standing instructions to interpret
the user’s context is not a trivial problem and
would require approaches beyond contemporary
prompting methods. Further, even with the gold
standing instructions in ORACLE, the models fail
to reach maximum exact match for interpretation,
suggesting the difficulty of the interpretation
task as well. We attribute this to the examples
in our dataset that require understanding from
different contexts - standing instructions, list of
valid APIs, and the current dialogue. Further,
the standing instructions are also dependent on
each other, hence, models need to reason over the
order in which instructions need to be processed to
generate the correct API call (see an example of
MULTIHOP).

Comparison across selection methods: We
find that LLM-based selection methods surpass
traditional methods based on lexical statistics
and embedding similarity as also seen in (Sun
et al., 2023). However, the gap between the
ORACLE setting in the selection module and the
best-performing configuration is also huge (on

both exact match and F1) suggesting that selecting
the relevant standing instructions explicitly from
the user profile in the context of the conversation is
challenging. We find that ICL has a significant im-
provement over ICL-DYNAMIC selection method
including the per reasoning type distribution in
Table 3. This indicates that using simple lexical
overlap is not sufficient for demonstration example
selection when performing in-context learning.

5.3 Results by reasoning type

We now break down the examples by reasoning
type in Table 3, and investigate the accuracy of
different methods, using GPT-3.5 as the base LLM.
We include the ORACLE for understanding the gaps
in these results.

• We observe that different methods display
varying trends across different reasoning types
and there is no one consistent winner among
these methods.

• We find that PLAIN is the easiest reason-
ing type for all the methods, suggesting that
LLMs do have the capacity to follow simple
standing instructions. Methods perform worse
on more complex MULTIDOMAIN examples
(<5%). These examples require sharing ar-
guments across multiple domains, following
individual standing instructions under respec-
tive domains, and reasoning across different
standing instructions.

• From Table 2, we note that the MULTI-PASS

setup has an overall exact match lower than

Type ORACLE DIRECT JOINT ICL-D ICL MULTI-P

NONEAPPLICABLE 65.3 45.9 37.9 54.4 58.5 29.4
PLAIN 80.3 56.2 56.5 41.8 28.5 36.5
MULTIHOP 65.3 41.8 34.1 27.6 19.1 34.1
MULTIPREFERENCE 40.0 11.5 11.5 8.8 4.1 9.7
MULTIDOMAIN 23.2 3.5 3.2 0.6 0.3 1.2
CONFLICT 70.3 34.1 26.2 17.1 6.8 14.7

Table 3: Per reasoning type exact match on the inter-
pretation task (GPT-3.5). ICL-D is ICL-DYNAMIC
and MULTI-P is MULTI-PASS. All the methods find
PLAIN easiest and struggle on MULTIDOMAIN. Differ-
ent methods show different trends without a consistent
winner.

ICL. However, the improvement in MULTI-
HOP, MULTIPREFERENCE, and MULTIDO-
MAIN reasoning type types over the ICL setup
suggests that another round of standing in-
struction selection can benefit the reasoning
types where some complex reasoning over the
instructions is required.

These trends also hold for GPT-4 and we report this
result in Table 5 in Appendix C.

5.4 Qualtitative Analysis

We analyse 100 erroneous examples each from
the DIRECT, the best-performing model and ICL,
the best model under SELECT-THEN-INTERPRET

setup (excluding ORACLE). We identify the most
prominent error in an example and discuss trends of
errors across these three experiments (for GPT-3.5).
We list these error examples in Table 4 The errors
that are common to both these methods include

• The hallucination of slot names and slot values
while generating the API calls (Example 1) as
well as missing some arguments (Example 3).

• Within the MULTIPREFERENCE reasoning
type, the models tend to exclude the second
API call. Further, if one of the repeating argu-
ment/slot has a standing instruction dependent
on its value, the model does not include this
conditional dependence when generating the
API call (Example 2).

• Within the MULTIDOMAIN reasoning type,
the models tend to exclude the API call for
one of the two domains (Example 3).

In addition to the above errors, DIRECT INTER-
PRETATION also suffers from over-generation of
API calls (Example 1). This is partly because
the model may confuse demonstration examples

from PLAIN or CONFLICT with MULTIDOMAIN

or MULTIPREFERENCE. Another possible reason
is that the model incorrectly considers many irrele-
vant instructions in the profile while generating the
API calls.

5.5 OpenAI’s Custom Instructions

OpenAI also recently reported the introduction of
custom instructions5 that allow the users to add
requirements or preferences that ChatGPT should
consider when generating the responses. This is
similar to our notion of standing instructions. To
test the effectiveness of this feature (free version),
we use the instructions from the user profile as
“custom instructions”. We pose the API generation
task as a standalone task and hope for the model to
directly incorporate the standing instructions from
the custom instructions. We also use the ICL setup
to provide examples about the task as discussed in
Section 4.3. As this effort requires manual copy-
pasting of examples, we randomly selected and
evaluated 17 examples per type, amounting to 102
test examples. While not directly comparable with
Table 2, the exact match for the interpretation task
on this subset is 15.6 and the slot F1 score is 45.5.
Thus, the model does not necessarily incorporate
the correct custom instructions every time. It is
prone to copying arguments from the demonstra-
tion example as well as hallucinating the arguments
and their values. For some examples, the model
is prone to over-generation of API calls and other
unrelated text. We remark that due to the opacity of
the “custom instructions” UI, we do not know the
prompt or exact LLM API call and we’ve observed
nondeterminism in the outputs.

6 Discussion

Identifying the subset of relevant instructions
is challenging: We compared and contrasted sev-
eral baseline methods on the NLSI dataset. One
peculiar observation is that all methods need to
perform better on the selection task for our dataset
especially the ones only making a single pass of
selection. The generation of the correct API call
requires understanding of the user’s context, the
schema, the set of relevant standing instructions, as
well as the dependence between standing instruc-
tions. Further, the order in which these instructions
are retrieved can be important, which means the

5https://openai.com/blog/
custom-instructions-for-chatgpt

https://openai.com/blog/custom-instructions-for-chatgpt
https://openai.com/blog/custom-instructions-for-chatgpt

Reasoning
Type Conversation Gold SI Gold API Predicted API Error

PLAIN
User: I am looking for a place
of interest to visit.

>If I’m looking to go some-
where, my top choice is New
York City.

GetTravel(category="Tourist
Attraction",
location="New York City)

GetTravel(category="Place
of Interest",
location="New York City")
GetMusic(genre="Country")
GetMedia(genre="Drama",
directed_by="Qui Sheng")
. . .

Hallucination

MULTI
PREFER-
ENCE

User: I fancy watching a movie
at home this evening

>When I request Media, my fa-
vorite type is adventure.
>If you’re looking for an ad-
venture movie, search for one
directed by Joel Coen.
>When I request Media, my fa-
vorite type is biographical.

GetMedia(directed_by="Joel
Coen",
genre="adventure")
GetMedia(genre="biographical")

GetMedia(genre="adventure"),
GetMedia(genre="biographical")

Skipped
Instruc-
tion

MULTI
DOMAIN

User: I’m looking for some
interesting attractions to visit,
specifically a Museum. Can
you help me find any?

>I prefer London as my desti-
nation when I travel.
>If I’m looking into Travel, I
should also check out Hotels.
>I prefer to stay in hotels that
have a two-star rating when I
am making reservations.

GetTravel(category="Museum",
location="London")
GetHotels(average_rating="2",
location="London")

GetTravel(category="Museum")
Missing
API Pre-
diction

Table 4: Examples of prominent errors across the DIRECT and ICL methods (with GPT-3). The incorrectly predicted
or missing arguments and function calls are marked in red. The DIRECT models tend to produce several unrelated
API calls (first example). Both DIRECT and ICL have a tendency to miss an argument that is only dependent on one
of the attributes in MULTIPREFERENCE, in this case missing the director Joel Coen. Majority of predictions in
MULTIDOMAIN fail at generating the API calls for the second domain.

instruction selection task is no longer a retrieval of
independent facts but a reasoning over attributes
from the user’s context. This may explain why we
found that standard retrieval approaches fail at this
task. Our findings align with the observations made
in other tasks that find the retrieval of some form of
context from a separate memory to be challenging
(Weir et al., 2023; Majumder et al., 2023).

Impact of size of user profile: The maximum
size of the user profile in our dataset is 22 stand-
ing instructions. Our current methods include all
the standing instructions explicitly as part of the
user profile in the respective prompts. Over time,
we envision the capability to add new standing in-
structions to user profiles, which might exceed the
prompt’s capacity. We anticipate that our bench-
mark can be useful for evaluating interesting ques-
tions in LLMs augmented with external memory
(Lewis et al., 2020). Further, decoupling the selec-
tion step would provide more transparency, as it
would allow users to see their individual standing
instructions that influenced the generated output
(Liu et al., 2023)

Interface to incorporate standing instructions:
Our current dataset assumes that the instructions
are already provided and the user has consented to
the use of the same. The CONFLICT reasoning type
also assumes that the user’s request is preferred
over standing instructions. In the future, standing
instructions can be extracted from user’s interac-

tions with the system. As standing instructions
become a component of a larger interface, UX de-
sign must include the user’s consent to include or
update such existing and inferred standing instruc-
tions. Our dataset only provides a starting point
on how standing instructions can be considered by
LLM-based systems.

7 Related Work

NL guidelines: Gupta et al. (2022) collected and
released a dataset of NL guidelines that govern the
safe response generation in dialogue systems. Com-
pared to theirs, we showcase a more challenging
retrieval setup: we have more applicable instruc-
tions on average, with rich phenomena such as
MULTIHOP or MULTIPREFERENCE (which is also
highlighted in their Limitations). Moreover, we
are concerned with generating structured represen-
tations as a more complex final task. Irfan et al.
(2021) consider a variant of standing instructions
in a barista setting where the instruction consists
of the favourite drink and snack of the correspond-
ing user. Our work offers more diverse scenarios
and domains. We also explore the complexity of
selecting relevant standing instructions.

The use of declarative NL specifications has
been explored in past work. For example, Ye et al.
(2023) use an LLM to generate a declarative task
specification, coupled with an off-the-shelf auto-
mated theorem prover to derive the final answer.

Weir et al. (2023) discuss methods to generate
user-NPC dialogues based on game quest specifica-
tions. Constitutional AI (Bai et al., 2022) identifies
whether some model response violates a given rule,
and then revises the response accordingly.

Closely related to the use of standing instruc-
tions is also learning from feedback (Labutov et al.,
2018; Tandon et al., 2022; Madaan et al., 2022),
where the goal is to maintain a memory of user-
provided feedback and use it to augment the knowl-
edge used by question-answering models at test
time. Analogously, standing instructions can also
be seen as a form of memory.

Personalisation: Personalisation in dialogue has
been extensively studied (Li et al. (2016); Zhang
et al. (2018); Majumder et al. (2020); inter-alia)
where the personality traits are provided through
NL statements. Closer to our work, Joshi et al.
(2017) provide a user profile consisting of age, gen-
der, and favourite food item structured as a dictio-
nary. However, all these works focus on providing
a persona to the bot to generate more engaging
responses rather than assisting the users in complet-
ing their request.

In a broader sense, learning from preferences has
been fundamental to improving user experience.
These include personalised review generation (Li
et al., 2020), personalised search results through
collaborative filtering (Micarelli et al., 2007) or
leveraging a profile of user interests (Speretta and
Gauch, 2005). More recently, Salemi et al. (2023)
explored personalised text generation with LLMs
on tasks such as article generation given past arti-
cles authored by the user. Our work provides incor-
poration of preferences explicitly through standing
instructions allowing better understanding of a gen-
erated result.

8 Conclusion

We proposed the use of standing instructions - a
set of natural language statements that contain the
user’s preferences to enhance the interpretation of
the user’s requests. To facilitate this, we created
NLSI, a dataset based on the SGD dataset. We
explored the interpretation task of generating API
calls which are conditioned on the user’s current
interaction with the system and selecting the rele-
vant standing instructions from a list of pre-defined
preferences. We experimented with several meth-
ods for the selection and interpretation tasks. Our
results show that while LLMs are somewhat ca-

pable of incorporating standing instructions as an
additional context, their usage of standing instruc-
tions is far from perfect. The models struggle at
selecting the instructions in the user profile that
were relevant for the given dialogue, which in turn
affects the interpretation task. Moreover, as reason-
ing types become more intricate and involve com-
plex reasoning or interactions among the respective
standing instructions, the interpretation of these
instructions becomes increasingly challenging for
the methods. This calls for the development of new
approaches in incorporating standing instructions,
reasoning-based retrieval, and memory-augmented
representations.

9 Limitations

Our task setup is limited to generating API calls
for the current turn. In an ideal scenario, the LLM
or the service should also display the results in a
user-friendly format, like natural language or Mark-
down, and perhaps confirm with the user before
executing the call. Our dataset is not accompanied
by the results from respective API calls or replies
from the system due to the unavailability of re-
sults from the base dataset. The different reasoning
types in our dataset are not exhaustive and future
work could look into expanding them.

As our dataset is derived from an existing task-
oriented dialogue dataset, it is useful for testing
methods, but we caution readers that it is only a
synthetic dataset. Preferences stated explicitly by
a human user would likely take a wider range of
natural language forms. Preferences deduced from
the user’s past history might take a non-linguistic
form, as in recommendation systems; they might be
uncertain or soft constraints that cannot be passed
directly as arguments to simple search APIs.

References
Yuntao Bai, Saurav Kadavath, Sandipan Kundu,

Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron
McKinnon, Carol Chen, Catherine Olsson, Christo-
pher Olah, Danny Hernandez, Dawn Drain, Deep
Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez,
Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua
Landau, Kamal Ndousse, Kamile Lukosuite, Liane
Lovitt, Michael Sellitto, Nelson Elhage, Nicholas
Schiefer, Noemi Mercado, Nova DasSarma, Robert
Lasenby, Robin Larson, Sam Ringer, Scott John-
ston, Shauna Kravec, Sheer El Showk, Stanislav Fort,
Tamera Lanham, Timothy Telleen-Lawton, Tom Con-
erly, Tom Henighan, Tristan Hume, Samuel R. Bow-

man, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,
Nicholas Joseph, Sam McCandlish, Tom Brown, and
Jared Kaplan. 2022. Constitutional AI: Harmlessness
from AI feedback.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in Neural Information Processing
systems, 33:1877–1901.

Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang
Yu, Tao He, Haotian Wang, Weihua Peng, Ming Liu,
Bing Qin, and Ting Liu. 2023. A survey of chain of
thought reasoning: Advances, frontiers and future.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and
Zhifang Sui. 2023. A survey on in-context learning.

Prakhar Gupta, Yang Liu, Di Jin, Behnam Hedayat-
nia, Spandana Gella, Sijia Liu, Patrick Lange, Julia
Hirschberg, and Dilek Hakkani-Tur. 2022. Dialguide:
Aligning dialogue model behavior with developer
guidelines. arXiv preprint arXiv:2212.10557.

Michael Heck, Nurul Lubis, Benjamin Ruppik, Renato
Vukovic, Shutong Feng, Christian Geishauser, Hsien-
chin Lin, Carel van Niekerk, and Milica Gasic. 2023.
ChatGPT for zero-shot dialogue state tracking: A
solution or an opportunity? In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
936–950, Toronto, Canada. Association for Compu-
tational Linguistics.

Bahar Irfan, Mehdi Hellou, and Tony Belpaeme. 2021.
Coffee with a hint of data: Towards using data-driven
approaches in personalised long-term interactions.
Frontiers in Robotics and AI, 8.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2022. Unsupervised dense in-
formation retrieval with contrastive learning. Trans.
Mach. Learn. Res., 2022.

Chaitanya K. Joshi, Fei Mi, and Boi Faltings. 2017.
Personalization in goal-oriented dialog. NeurIPS
2017 Conversational AI Workshop.

Igor Labutov, Bishan Yang, and Tom Mitchell. 2018.
Learning to learn semantic parsers from natural lan-
guage supervision. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1676–1690, Brussels, Belgium.
Association for Computational Linguistics.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for

knowledge-intensive NLP tasks. In Advances in Neu-
ral Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Jiwei Li, Michel Galley, Chris Brockett, Georgios Sp-
ithourakis, Jianfeng Gao, and Bill Dolan. 2016. A
persona-based neural conversation model. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 994–1003, Berlin, Germany. Associa-
tion for Computational Linguistics.

Junyi Li, Siqing Li, Wayne Xin Zhao, Gaole He,
Zhicheng Wei, Nicholas Jing Yuan, and Ji-Rong Wen.
2020. Knowledge-enhanced personalized review gen-
eration with capsule graph neural network. In Pro-
ceedings of the 29th ACM International Conference
on Information & Knowledge Management, pages
735–744.

Yang Liu, Yuanshun Yao, Jean-Francois Ton, Xiaoying
Zhang, Ruocheng Guo, Hao Cheng, Yegor Klochkov,
Muhammad Faaiz Taufiq, and Hang Li. 2023. Trust-
worthy llms: a survey and guideline for evaluating
large language models’ alignment.

Aman Madaan, Niket Tandon, Peter Clark, and Yiming
Yang. 2022. Memory-assisted prompt editing to im-
prove gpt-3 after deployment. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing, pages 2833–2861.

Bodhisattwa Prasad Majumder, Harsh Jhamtani, Tay-
lor Berg-Kirkpatrick, and Julian McAuley. 2020.
Like hiking? You probably enjoy nature: Persona-
grounded dialog with commonsense expansions. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9194–9206.

Bodhisattwa Prasad Majumder, Bhavana Dalvi Mishra,
Peter Jansen, Oyvind Tafjord, Niket Tandon,
Li Zhang, Chris Callison-Burch, and Peter Clark.
2023. CLIN: A continually learning language agent
for rapid task adaptation and generalization.

Alessandro Micarelli, Fabio Gasparetti, Filippo Sciar-
rone, and Susan Gauch. 2007. Personalized search on
the World Wide Web. In Peter Brusilovsky, Alfred
Kobsa, and Wolfgang Nejdl, editors, The Adaptive
Web: Methods and Strategies of Web Personalization,
volume 4321 of Lecture Notes in Computer Science,
pages 195–230. Springer.

OpenAI. 2023. GPT-4 technical report.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie,
Jie Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu, and
Maosong Sun. 2023. ToolLLM: Facilitating large
language models to master 16000+ real-world apis.

http://arxiv.org/abs/2212.08073
http://arxiv.org/abs/2212.08073
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2309.15402
http://arxiv.org/abs/2309.15402
http://arxiv.org/abs/2301.00234
https://arxiv.org/pdf/2212.10557.pdf
https://arxiv.org/pdf/2212.10557.pdf
https://arxiv.org/pdf/2212.10557.pdf
https://doi.org/10.18653/v1/2023.acl-short.81
https://doi.org/10.18653/v1/2023.acl-short.81
https://doi.org/10.3389/frobt.2021.676814
https://doi.org/10.3389/frobt.2021.676814
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
https://arxiv.org/abs/1706.07503
https://doi.org/10.18653/v1/D18-1195
https://doi.org/10.18653/v1/D18-1195
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.18653/v1/P16-1094
https://doi.org/10.18653/v1/P16-1094
https://doi.org/10.1145/3340531.3411893
https://doi.org/10.1145/3340531.3411893
http://arxiv.org/abs/2308.05374
http://arxiv.org/abs/2308.05374
http://arxiv.org/abs/2308.05374
https://arxiv.org/pdf/2201.06009.pdf
https://arxiv.org/pdf/2201.06009.pdf
https://aclanthology.org/2020.emnlp-main.739
https://aclanthology.org/2020.emnlp-main.739
http://arxiv.org/abs/2310.10134
http://arxiv.org/abs/2310.10134
https://link.springer.com/chapter/10.1007/978-3-540-72079-9_6
https://link.springer.com/chapter/10.1007/978-3-540-72079-9_6
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8689–8696.

Stephen E. Robertson, Steve Walker, Susan Jones,
Micheline Hancock-Beaulieu, and Mike Gatford.
1994. Okapi at TREC-3. In Text Retrieval Con-
ference.

Subhro Roy, Sam Thomson, Tongfei Chen, Richard
Shin, Adam Pauls, Jason Eisner, and Benjamin Van
Durme. 2023. BenchCLAMP: A benchmark for eval-
uating language models on syntactic and semantic
parsing. In Thirty-seventh Conference on Neural
Information Processing Systems Datasets and Bench-
marks Track.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2655–2671, Seattle, United States.
Association for Computational Linguistics.

Alireza Salemi, Sheshera Mysore, Michael Bendersky,
and Hamed Zamani. 2023. LaMP: When large lan-
guage models meet personalization.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. In Thirty-seventh Conference on Neural
Information Processing Systems.

Mirco Speretta and Susan Gauch. 2005. Personalized
search based on user search histories. The 2005
IEEE/WIC/ACM International Conference on Web
Intelligence (WI’05), pages 622–628.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. 2023. Is ChatGPT good at search?
investigating large language models as re-ranking
agents.

Niket Tandon, Aman Madaan, Peter Clark, and Yiming
Yang. 2022. Learning to repair: Repairing model out-
put errors after deployment using a dynamic memory
of feedback. In Findings of the Association for Com-
putational Linguistics: NAACL 2022, pages 339–352,
Seattle, United States. Association for Computational
Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan

Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurIPS.

Nathaniel Weir, Ryan Thomas, Randolph D’Amore, Kel-
lie Hill, Benjamin Van Durme, and Harsh Jhamtani.
2023. Ontologically faithful generation of non-player
character dialogues.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett.
2023. SatLM: Satisfiability-aided language models
using declarative prompting. In The 3rd Workshop
on Mathematical Reasoning and AI at NeurIPS’23.

Ori Yoran, Tomer Wolfson, Ben Bogin, Uri Katz, Daniel
Deutch, and Jonathan Berant. 2023. Answering
questions by meta-reasoning over multiple chains
of thought.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: I have a dog, do you
have pets too? In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2204–2213,
Melbourne, Australia. Association for Computational
Linguistics.

A Dataset Construction Details

Forming examples for different reasoning types:
We do not need to extract any standing instructions
z for examples in NONEAPPLICABLE. For exam-
ples in PLAIN, each (domain, slot, value) triple
was extracted and written in natural language via
an if-else template. Since each slot is indepen-
dent of each other, this set of instructions form z.
MULTIHOP examples were formed by creating a
hierarchy of slots associated with the same domain
(like seating_class is dependent on airlines). If
the subsequent dialogue states contained the same
dependent slots, then that example was categorized
as a MULTIHOP example, where the primary slot
value was obtained from the dialogue or one of

https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.1609/aaai.v34i05.6394
https://api.semanticscholar.org/CorpusID:3946054
https://openreview.net/forum?id=k4juAEW1tG
https://openreview.net/forum?id=k4juAEW1tG
https://openreview.net/forum?id=k4juAEW1tG
https://doi.org/10.18653/v1/2022.naacl-main.191
https://doi.org/10.18653/v1/2022.naacl-main.191
http://arxiv.org/abs/2304.11406
http://arxiv.org/abs/2304.11406
https://openreview.net/forum?id=Yacmpz84TH
https://openreview.net/forum?id=Yacmpz84TH
https://ieeexplore.ieee.org/abstract/document/1517922
https://ieeexplore.ieee.org/abstract/document/1517922
http://arxiv.org/abs/2304.09542
http://arxiv.org/abs/2304.09542
http://arxiv.org/abs/2304.09542
https://doi.org/10.18653/v1/2022.findings-naacl.26
https://doi.org/10.18653/v1/2022.findings-naacl.26
https://doi.org/10.18653/v1/2022.findings-naacl.26
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://arxiv.org/abs/2212.10618
http://arxiv.org/abs/2212.10618
https://openreview.net/forum?id=8tt9KxyV2s
https://openreview.net/forum?id=8tt9KxyV2s
http://arxiv.org/abs/2304.13007
http://arxiv.org/abs/2304.13007
http://arxiv.org/abs/2304.13007
https://doi.org/10.18653/v1/P18-1205
https://doi.org/10.18653/v1/P18-1205
https://doi.org/10.18653/v1/P18-1205

the standing instructions. MULTIDOMAIN exam-
ples were dialogues from SGD that were inherently
multi-domain because they required API calls from
different domains. These reasoning types were cre-
ated through a deterministic process based on the
existing SGD data.

MULTIPREFERENCE examples were formed by
duplicating one of the ground truth standing instruc-
tions from PLAIN, MULTIHOP and MULTIDO-
MAIN, and substituting a value with another rele-
vant entity. Meanwhile, CONFLICT examples were
formed with examples from PLAIN or MULTIHOP.
We added information that conflicts with the gold
standing instruction like asking for Mexican restau-
rants when the standing instruction is about prefer-
ence for Italian restaurants.

Post-processing: We unified domains such
as Restaurant_1, Restaurant_3 as Restaurants.
Restaurant_2 was renamed as HouseStays. We
also deduplicated the slot names under these do-
mains like location and area was converted to area.
Similarly, the Services domain was expanded as
Salons, Doctors, and Dentists instead. All the ex-
amples were constructed only from the domains
and examples available in the training set of SGD.
In addition to removing domains whose combina-
tion doesn’t make sense in the MULTIDOMAIN

reasoning type, we also remove MULTIDOMAIN

examples which do not have any attributes for the
second domain.

For paraphrasing the templated instructions, we
prompted GPT-3 to generate paraphrases with three
distinct prompts to promote diversity.
Prompt 1: Write a colloquial paraphrase for the

given sentences. Refrain from using if then format

Prompt 2: Reword the following in your own words.

Keep the same meaning. Change the sentence

structure to exclude if then format:

Prompt 3: Reword the following in your own words.

Keep the same meaning. Make the sentences sound

like instructions or commands.

Change the sentence structure to exclude if-then

format. If the sentence starts with “If I ask for

xyz”, also reword that xyz part.

We replace the templated standing instruction ran-
domly with one of the paraphrases leading to 4097
unique instructions across the dataset.

B Experiment Details

For the selection experiments involving BM25
and Contriever, N was varied from 1 to 10 and

chosen according to the best exact match on the
dev set (N=4 for BM25, N=2 for CONTRIEVER).
For LLMs, the K for demonstration exemplars
was varied from 1 to 5 (with K=5 being best
for ICL-DYNAMIC and other interpretation tasks).
For the MULTI-PASS experiments, we varied K
for three additional rounds and found that pro-
viding one additional pass had the best results on
the development set. The temperature for all the
LLM-based experiments was 0. We provide the
prompt templates for the different experiments at
https://github.com/nikitacs16/nlsi

For evaluation, all the outputs were converted
to lowercase and double quotes were unified to a
fixed unicode. Using “vs” and “versus” was unified
to “versus”. The models were not penalised if they
produced subcategory instead of event_type arising
due to the noise in the base dataset. For the inter-
pretation evaluation, the API calls were converted
to function_name-slot-value triples per slot-value
per API call. In the case of examples multiple API
calls, the models had a tendency to include every
attribute in a single API call instead of separate
API calls. To penalise this in the exact match, if
the number of predicted API calls was not equal to
ground truth API calls the model received an exact
match of 0.

C Additional Results

We report the results by reasoning type for experi-
ments using base LLM as GPT-4 in Table 5. The
trends are similar to the trends discussed in Sec-
tion 5.3. As we could not obtain the interpretaion
results in time, we look at the per reasoning type
type for the selection task while comparing ICL
and MULTI-PASS. We see that there is a clear
improvement over PLAIN (86.7 v/s 92.0), MUL-
TIPREFERENCE (46.7 v/s 61.4) and MULTIDO-
MAIN(30.5 v/s 40.2) confirming that a second pass
over the predictions improves the results.

https://github.com/nikitacs16/nlsi

Type ORACLE DIRECT JOINT ICL-D ICL

NONEAPPLICABLE 68.2 57.3 48.8 61.4 62.6
PLAIN 77.9 67.6 70.5 69.7 65.0
MULTIHOP 65.5 56.4 47.3 59.1 57.9
MULTIPREFERENCE 55.8 24.1 32.6 42.6 38.2
MULTIDOMAIN 30.9 16.1 12.6 12.0 07.6
CONFLICT 70.2 35.0 32.0 33.5 22.3

Table 5: Per reasoning type exact match on the interpre-
tation task (GPT-4). ICL-D is ICL-DYNAMIC. All the
methods find PLAIN easiest while struggling at MUL-
TIDOMAIN. Different methods show different trends
without a consistent winner

